We discuss a new notion of distance on the space of finite and nonnegative measures which can be seen as a generalization of the well-known Kantorovich-Wasserstein distance. The new distance is based on a dynamical formulation given by an Onsager operator that is the sum of a Wasserstein diffusion part and an additional reaction part describing the generation and absorption of mass. We present a full characterization of the distance and its properties. In fact the distance can be equivalently described by an optimal transport problem on the cone space over the underlying metric space. We give a construction of geodesic curves and discuss their properties.
In this paper we study the local linearization of the Hellinger--Kantorovich distance via its Riemannian structure. We give explicit expressions for the logarithmic and exponential map and identify a suitable notion of a Riemannian inner product. Sam
ples can thus be represented as vectors in the tangent space of a suitable reference measure where the norm locally approximates the original metric. Working with the local linearization and the corresponding embeddings allows for the advantages of the Euclidean setting, such as faster computations and a plethora of data analysis tools, whilst still still enjoying approximately the descriptive power of the Hellinger--Kantorovich metric.
We develop a full theory for the new class of Optimal Entropy-Transport problems between nonnegative and finite Radon measures in general topological spaces. They arise quite naturally by relaxing the marginal constraints typical of Optimal Transpo
rt problems: given a couple of finite measures (with possibly different total mass), one looks for minimizers of the sum of a linear transport functional and two convex entropy functionals, that quantify in some way the deviation of the marginals of the transport plan from the assigned measures. As a powerful application of this theory, we study the particular case of Logarithmic Entropy-Transport problems and introduce the new Hellinger-Kantorovich distance between measures in metric spaces. The striking connection between these two seemingly far topics allows for a deep analysis of the geometric properties of the new geodesic distance, which lies somehow between the well-known Hellinger-Kakutani and Kantorovich-Wasserstein distances.
We study the barycenter of the Hellinger--Kantorovich metric over non-negative measures on compact, convex subsets of $mathbb{R}^d$. The article establishes existence, uniqueness (under suitable assumptions) and equivalence between a coupled-two-marg
inal and a multi-marginal formulation. We analyze the HK barycenter between Dirac measures in detail, and find that it differs substantially from the Wasserstein barycenter by exhibiting a local `clustering behaviour, depending on the length scale of the input measures. In applications it makes sense to simultaneously consider all choices of this scale, leading to a 1-parameter family of barycenters. We demonstrate the usefulness of this family by analyzing point clouds sampled from a mixture of Gaussians and inferring the number and location of the underlying Gaussians.
In reinforcement learning (RL), temporal abstraction still remains as an important and unsolved problem. The options framework provided clues to temporal abstraction in the RL, and the option-critic architecture elegantly solved the two problems of f
inding options and learning RL agents in an end-to-end manner. However, it is necessary to examine whether the options learned through this method play a mutually exclusive role. In this paper, we propose a Hellinger distance regularizer, a method for disentangling options. In addition, we will shed light on various indicators from the statistical point of view to compare with the options learned through the existing option-critic architecture.
We provide some Liouville theorems for ancient nonnegative solutions of the heat equation on a complete non-compact Riemannian manifold with Ricci curvature bounded from below. We determine growth conditions ensuring triviality of the latters, showing their optimality through examples.
Matthias Liero
,Alexander Mielke
,Giuseppe Savare
.
(2015)
.
"Optimal transport in competition with reaction: the Hellinger-Kantorovich distance and geodesic curves"
.
Matthias Liero
هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا