ﻻ يوجد ملخص باللغة العربية
Research interest in rapid structured-light imaging has grown increasingly for the modeling of moving objects, and a number of methods have been suggested for the range capture in a single video frame. The imaging area of a 3D object using a single projector is restricted since the structured light is projected only onto a limited area of the object surface. Employing additional projectors to broaden the imaging area is a challenging problem since simultaneous projection of multiple patterns results in their superposition in the light-intersected areas and the recognition of original patterns is by no means trivial. This paper presents a novel method of multi-projector color structured-light vision based on projector-camera triangulation. By analyzing the behavior of superposed-light colors in a chromaticity domain, we show that the original light colors cannot be properly extracted by the conventional direct estimation. We disambiguate multiple projectors by multiplexing the orientations of projector patterns so that the superposed patterns can be separated by explicit derivative computations. Experimental studies are carried out to demonstrate the validity of the presented method. The proposed method increases the efficiency of range acquisition compared to conventional active stereo using multiple projectors.
Multiple color stripes have been employed for structured light-based rapid range imaging to increase the number of uniquely identifiable stripes. The use of multiple color stripes poses two problems: (1) object surface color may disturb the stripe co
For structured-light range imaging, color stripes can be used for increasing the number of distinguishable light patterns compared to binary BW stripes. Therefore, an appropriate use of color patterns can reduce the number of light projections and ra
Active range sensing using structured-light is the most accurate and reliable method for obtaining 3D information. However, most of the work has been limited to range sensing of static objects, and range sensing of dynamic (moving or deforming) objec
Recently, numerous algorithms have been developed to tackle the problem of vision-language navigation (VLN), i.e., entailing an agent to navigate 3D environments through following linguistic instructions. However, current VLN agents simply store thei
Color transfer between images uses the statistics information of image effectively. We present a novel approach of local color transfer between images based on the simple statistics and locally linear embedding. A sketching interface is proposed for