ترغب بنشر مسار تعليمي؟ اضغط هنا

Growth and Characterization of Ce- Substituted Nd2Fe14B Single Crystals

98   0   0.0 ( 0 )
 نشر من قبل Michael Susner
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Single crystals of (Nd1-xCex)2Fe14B are grown out of Fe-(Nd,Ce) flux. Chemical and structural analysis of the crystals indicates that (Nd1-xCex)2Fe14B forms a solid solution until at least x = 0.38 with a Vegard-like variation of the lattice constants with x. Refinements of single crystal neutron diffraction data indicate that Ce has a slight site preference (7:3) for the 4g rare earth site over the 4f site. Magnetization measurements show that for x = 0.38 the saturation magnetization at 400 K, a temperature important to applications, falls from 29.8 for the parent Nd2Fe14B to 27.6 (mu)B/f.u., the anisotropy field decreases from 5.5 T to 4.7 T, and the Curie temperature decreases from 586 to 543 K. First principles calculations carried out within density functional theory are used to explain the decrease in magnetic properties due to Ce substitution. Though the presence of the lower-cost and more abundant Ce slightly affects these important magnetic characteristics, this decrease is not large enough to affect a multitude of applications. Ce-substituted Nd2Fe14B is therefore a potential high-performance permanent magnet material with substantially reduced Nd content.



قيم البحث

اقرأ أيضاً

The Mott-insulating rare-earth titanates (RTiO$_3$, R being a rare-earth ion) are an important class of materials that encompasses interesting spin-orbital phases as well as ferromagnet-antiferromagnet and insulator-metal transitions. The growth of t hese materials has been plagued by difficulties related to overoxidation, which arises from a strong tendency of Ti$^{3+}$ to oxidize to Ti$^{4+}$. We describe our efforts to grow sizable single crystals of YTiO$_3$ and its La-substituted and Ca-doped variants with the optical travelling-solvent floating-zone technique. We present sample characterization $via$ chemical composition analysis, magnetometry, charge transport, neutron scattering, x-ray absorption spectroscopy and x-ray magnetic circular dichroism to understand macroscopic physical property variations associated with overoxidation. Furthermore, we demonstrate a good signal-to-noise ratio in inelastic magnetic neutron scattering measurements of spin-wave excitations. A superconducting impurity phase, found to appear in Ca-doped samples at high doping levels, is identified as TiO.
The evolution of magnetism and superconductivity in Ce$_2$Rh$_{1-x}$Pd$_x$In$_8$ solid solutions has been studied within the entire concentration range by means of thermodynamic and magnetic measurements at ambient pressure and at temperatures betwee n 0.35 K and room temperature. For this purpose, single crystals with Pd concentrations x = 0, 0.10, 0.15, 0.30, 0.45, 0.55, 0.85 and 1 have been grown from In self-flux and characterized by x-ray diffraction and microprobe analysis. Starting from the antiferromagnet Ce$_2$RhIn$_8$, the Neel temperature gradually decreases with increasing Pd concentration and the antiferromagnetism has disappeared for $x ge 0.45$. Superconductivity has been observed only for Ce$_2$PdIn$_8$.
F-substituted ROBiS2 (R = La, Ce, Nd) superconducting single crystals with different F concentration were grown successfully using CsCl/KCl flux. All the obtained single crystals had a plate-like shape with a well-developed ab-plane of 1-2 mm in size . The flux components of Cs, K, and Cl were not detected in the obtained single crystals by electron probe microanalysis. The grown single crystals of F-substituted LaOBiS2 and CeOBiS2 showed superconducting at about 3 K while the Tc of the F-substituted NdOBiS2 exhibited approximately 5 K. The superconducting anisotropy of the single crystals of F-substituted LaOBiS2 and NdOBiS2 was estimated to be 30-45 according to the effective mass model whereas those values were 13-21 for the F-substituted CeOBiS2 single crystals. The F-substituted CeOBiS2 single crystals exhibited magnetic order at about 7 K that apparently coexisted with superconductivity below around 3 K.
Solution growth of single crystals of the recently reported new compound Ce2PdIn8 was investigated. When growing from a stoichiometry in a range 2:1:20 - 2:1:35, single crystals of CeIn3 covered by a thin (~50 um) single-crystalline layer of Ce2PdIn8 were mostly obtained. Using palladium richer compositions the thickness of the Ce2PdIn8 layers were increased, which allowed mechanical extraction of single-phase slabs of the desired compound suitable for a thorough study of magnetism and superconductivity. In some solution growth products also CePd3In6 (LaNi3In6 - type of structure) and traces of phases with the stoichiometry CePd2In7, Ce1.5Pd1.5In7 (determined only by EDX) have been identified. Magnetic measurements of the Ce2PdIn8 single crystals reveal paramagnetic behaviour of the Ce3+ ions with significant magnetocrystalline anisotropy. Above 70 K the magnetic susceptibility follows the Curie-Weiss law with considerably different values of the paramagnetic Curie temperature, for the magnetic field applied along the a- (-90 K) and c-(-50 K) axis. Below the reported critical temperature for superconductivity Tc (0.69 K) the electrical resistivity drops to zero. Comparative measurements of the electrical resistivity, heat capacity and AC susceptibility of several crystals reveal that the superconducting transition is strongly sample-dependent.
F-substituted LaOBiSe2 single crystals were grown using CsCl flux. The obtained single crystals showed a plate-like shape with a size of about 1.0 mm square. The c-axis lattice constant of the grown crystals was determined to be 14.114(3) {AA}. The s uperconducting critical temperature of the single crystal was approximately 3.5 K. The superconducting anisotropies were determined to be 49 and 24 using the upper critical field and the effective mass model, respectively.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا