ترغب بنشر مسار تعليمي؟ اضغط هنا

A Compton-thin Solution for the Suzaku X-ray Spectrum of the Seyfert 2 Galaxy Mkn 3

153   0   0.0 ( 0 )
 نشر من قبل Tahir Yaqoob
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Mkn 3 is a Seyfert 2 galaxy that is widely regarded as an exemplary Compton-thick AGN. We study the Suzaku X-ray spectrum using models of the X-ray reprocessor that self-consistently account for the Fe K$alpha$ fluorescent emission line and the associated Compton-scattered, or reflection, continuum. We find a solution in which the average global column density, $0.234^{+0.012}_{-0.010} times 10^{24} rm cm^{-2}$, is very different to the line-of-sight column density, $0.902^{+0.012}_{-0.013} times 10^{24} rm cm^{-2}$. The global column density is $sim 5$ times smaller than that required for the matter distribution to be Compton-thick. Our model accounts for the profiles of the Fe K$alpha$ and Fe K$beta$ lines, and the Fe K edge remarkably well, with a solar abundance of Fe. The matter distribution could consist of a clumpy medium with a line-of-sight column density higher than the global average. A uniform, spherically-symmetric distribution alone cannot simultaneously produce the correct fluorescent line spectrum and reflection continuum. Previous works on Mkn 3, and other AGN, that assumed a reflection continuum from matter with an infinite column density could therefore lead to erroneous or puzzling conclusions if the matter out of the line-of-sight is really Compton-thin. Whereas studies of samples of AGN have generally only probed the line-of-sight column density, with simplistic, one-dimensional models, it is important now to establish the global column densities in AGN. It is the global properties that affect the energy budget in terms of reprocessing of X-rays into infrared emission, and that constrain population synthesis models of the cosmic X-ray background.

قيم البحث

اقرأ أيضاً

We present a detailed X-ray spectral analysis of the nearby Seyfert 2 galaxy MCG-01-24-12 based on a multi-epoch data set. Data have been taken with different X-ray satellites, namely XMM-Newton, NuSTAR, Swift and Chandra and cover different time int ervals, from years down to a few days. From 2006 to 2013 the source had a 2-10 keV flux of $sim$1.5$times$10$^{-11}$ erg cm$^{-2}$ s$^{-1}$, consistent with archival observations based on textit{HEAO} and textit{BeppoSAX} data, though a 2019 textit{Chandra} snapshot caught the source in an extreme low flux state, a factor of $sim$10 fainter than its historical one. Based on phenomenological and physically motivated models, we find the X-ray spectrum of MCG-01-24-12 to be best modelled by a power-law continuum emission with $Gamma$=1.76$pm$0.09 with a high energy cut-off at E$_{rm c}=70^{+21}_{-14}$ keV that is absorbed by a fairly constant column density of N$_{rm H}$=(6.3$pm$0.5)$times10^{22}$ cm$^{-2}$. These quantities allowed us to estimate the properties of the hot corona in MCG-01-24-12 for the cases of a spherical or slab-like hot Comptonising plasma to be kT$_{rm e}$=27$^{+8}_{-4}$ keV, $tau_{rm e}$=5.5$pm$1.3 and kT$_{rm e}$=28$^{+7}_{-5}$ keV, $tau$=3.2$pm$0.8, respectively. Finally, despite the short duration of the exposures, possible evidence of the presence of outflows is discussed.
The bright type I Seyfert galaxy NGC 3516 was observed by {it Suzaku} twice, in 2005 October 12--15 and 2009 October 28--November 2, for a gross time coverage of 242 and 544 ksec and a net exposure of 134 and 255 ksec, respectively. The 2--10 keV lum inosity was $2.8 times 10^{41}$ erg s$^{-1}$ in 2005, and $1.6 times 10^{41}$ erg s$^{-1}$ in 2009. The 1.4--1.7 keV and 2--10 keV count rates both exhibited peak-to-peak variations by a factor of $sim2$ in 2005, while $sim 4$ in 2009. In either observation, the 15--45 keV count rate was less variable. The 2--10 keV spectrum in 2005 was significantly more convex than that in 2009. Through a count-count-plot technique, the 2--45 keV signals in both data were successfully decomposed in a model-independent way into two distinct broadband components. One is a variable emission with a featureless spectral shape, and the other is a non-varying hard component accompanied by a prominent Fe-K emission line at 6.33 keV (6.40 keV in the rest frame). The former was fitted successfully by an absorbed power-law model, while the latter requires a new hard continuum in addition to a reflection component from distant materials. The spectral and variability differences between the two observations are mainly attributed to long-term changes of this new hard continuum, which was stable on time scales of several hundreds ksec.
The Circinus galaxy is one of the nearest obscured AGN, making it an ideal target for detailed study. Combining archival Chandra and XMM-Newton data with new NuSTAR observations, we model the 2-79 keV spectrum to constrain the primary AGN continuum a nd to derive physical parameters for the obscuring material. Chandras high angular resolution allows a separation of nuclear and off-nuclear galactic emission. In the off-nuclear diffuse emission we find signatures of strong cold reflection, including high equivalent-width neutral Fe lines. This Compton-scattered off-nuclear emission amounts to 18% of the nuclear flux in the Fe line region, but becomes comparable to the nuclear emission above 30 keV. The new analysis no longer supports a prominent transmitted AGN component in the observed band. We find that the nuclear spectrum is consistent with Compton-scattering by an optically-thick torus, where the intrinsic spectrum is a powerlaw of photon index $Gamma = 2.2-2.4$, the torus has an equatorial column density of $N_{rm H} = (6-10)times10^{24}$cm$^{-2}$ and the intrinsic AGN $2-10$ keV luminosity is $(2.3-5.1)times 10^{42}$ erg/s. These values place Circinus along the same relations as unobscured AGN in accretion rate-vs-$Gamma$ and $L_X$-vs-$L_{IR}$ phase space. NuSTARs high sensitivity and low background allow us to study the short time-scale variability of Circinus at X-ray energies above 10 keV for the first time. The lack of detected variability favors a Compton-thick absorber, in line with the the spectral fitting results.
We obtained a wide-band spectrum of the Compton-thick Seyfert 2 galaxy Mrk 3 with Suzaku. The observed spectrum was clearly resolved into weak, soft power-law emission, a heavily absorbed power-law component, cold reflection, and many emission lines. The heavily absorbed component, absorbed by gas with a column density of 1.1x10^24 cm^-2, has an intrinsic 2--10 keV luminosity of ~1.6x10^43 erg s^-1, and is considered to be direct emission from the Mrk 3 nucleus. The reflection component was interpreted as reflection of the direct light off cold, thick material; the reflection fraction $R$ was 1.36+/-0.20. The cold material is inferred to be located > 1 pc from the central black hole of Mrk 3 due to the low ionization parameter of iron (xi < 1 erg cm s^-1) and the narrow iron line width (s < 22 eV). A Compton shoulder to the iron line was detected, but the intensity of the shoulder component was less than that expected from spherically distributed Compton-thick material. The weak, soft power-law emission is considered to be scattered light by ionized gas. The existence of many highly-ionized lines from O, Ne, Mg, Si, S, and Fe in the observed spectrum indicates that the ionized gas has a broad ionized structure, with xi=10--1000. The scattering fraction with respect to the direct light was estimated to be 0.9+/-0.2%, which indicates that the column density of the scattering region is about 3.6x10^22 cm^-2. This high-quality spectrum obtained by Suzaku can be considered a template for studies of Seyfert 2 galaxies.
We have carried out an extensive X-ray spectral study of the bare Seyfert-1 galaxy MCG--02--58--22 to ascertain the nature of the X-ray reprocessing media, using observations from Suzaku (2009) and simultaneous observations from XMM-Newton and NuSTAR (2016) . The most significant results of our investigation are: 1. The primary X-ray emission from the corona is constant in these observations, both in terms of the power law slope ($Gamma=1.80$) and luminosity ($L_{2-10 rm keV}= 2.55times 10^{44} $ erg/s). 2. The soft excess flux decreased by a factor of two in 2016, the Compton hump weakened/vanished in 2016, and the narrow FeK$alpha$ emission line became marginally broad ($sigma=0.35pm0.08$ keV) and its flux doubled in 2016. 3. From physical model fits we find that the normalization of the narrow component of the FeK$alpha$ line does not change in the two epochs, although the Compton hump vanishes in the same time span. Since the primary X-ray continuum does not change, we presume that any changes in the reprocessed emission must arise due to changes in the reprocessing media. Our primary conclusions are: A. The vanishing of the Compton hump in 2016 can probably be explained by a dynamic clumpy torus which is infalling/outflowing, or by a polar torus wind. B. The torus in this AGN possibly has two structures: an equatorial toroidal disk (producing the narrow FeK$alpha$ emission) and a polar component (producing the variable Compton hump), C. The reduction of the soft-excess flux by half and increase in the FeK$alpha$ flux by a factor of two in the same period cannot be adequately explained by ionized disk reflection model alone.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا