ﻻ يوجد ملخص باللغة العربية
We present version 8 of the CHIANTI database. This version includes a large amount of new data and ions, which represent a significant improvement in the soft X-ray, EUV and UV spectral regions, which several space missions currently cover. New data for neutrals and low charge states are also added. The data are assessed, but to improve the modelling of low-temperature plasma the effective collision strengths for most of the new datasets are not spline-fitted as previously, but are retained as calculated. This required a change of the format of the CHIANTI electron excitation files. The format of the energy files has also been changed. Excitation rates between all the levels are retained for most of the new datasets, so the data can in principle be used to model high-density plasma. In addition, the method for computing the differential emission measure used in the CHIANTI software has been changed.
CHIANTI contains a large quantity of atomic data for the analysis of astrophysical spectra. Programs are available in IDL and Python to perform calculation of the expected emergent spectrum from these sources. The database includes atomic energy leve
We present version 10 of the CHIANTI package. In this release, we provide updated atomic models for several helium-like ions and for all the ions of the beryllium, carbon and magnesium isoelectronic sequences that are abundant in astrophysical plasma
Ordered atomic arrays trapped in the vicinity of nanoscale waveguides offer original light-matter interfaces, with applications to quantum information and quantum non-linear optics. Here, we study the decay dynamics of a single collective atomic exci
We describe the atomic database of the XSTAR spectral modeling code, summarizing the systematic upgrades carried out in the past twenty years to enable the modeling of K lines from chemical elements with atomic number $Zleq 30$ and recent extensions
We present a calculation of the atomic and low-ionisation emission line spectra of photoevaporating protoplanetary discs. Line luminosities and profiles are obtained from detailed photoionisation calculations of the disc and wind structures surroundi