ﻻ يوجد ملخص باللغة العربية
The fundamental gap is a central quantity in the electronic structure of matter. Unfortunately, the fundamental gap is not generally equal to the Kohn-Sham gap of density functional theory (DFT), even in principle. The two gaps differ precisely by the derivative discontinuity, namely, an abrupt change in slope of the exchange-correlation (xc) energy as a function of electron number, expected across an integer-electron point. Popular approximate functionals are thought to be devoid of a derivative discontinuity, strongly compromising their performance for prediction of spectroscopic properties. Here we show that, in fact, all exchange-correlation functionals possess a derivative discontinuity, which arises naturally from the application of ensemble considerations within DFT, without any empiricism. This derivative discontinuity can be expressed in closed form using only quantities obtained in the course of a standard DFT calculation of the neutral system. For small, finite systems, addition of this derivative discontinuity indeed results in a greatly improved prediction for the fundamental gap, even when based on the most simple approximate exchange-correlation density functional - the local density approximation (LDA). For solids, the same scheme is exact in principle, but when applied to LDA it results in a vanishing derivative discontinuity correction. This failure is shown to be directly related to the failure of LDA in predicting fundamental gaps from total energy differences in extended systems.
The localized Hartree-Fock potential has proven to be a computationally efficient alternative to the optimized effective potential, preserving the numerical accuracy of the latter and respecting the exact properties of being self-interaction free and
An alternative type of approximation for the exchange and correlation functional in density functional theory is proposed. This approximation depends on a variable $u$ that is able to detect inhomogeneities in the electron density $rho$ without using
Potential functional approximations are an intriguing alternative to density functional approximations. The potential functional that is dual to the Lieb density functional is defined and properties given. The relationship between Thomas-Fermi theory
Computationally-efficient semilocal approximations of density functional theory at the level of the local spin density approximation (LSDA) or generalized gradient approximation (GGA) poorly describe weak interactions. We show improved descriptions f
Machine learning is a powerful tool to design accurate, highly non-local, exchange-correlation functionals for density functional theory. So far, most of those machine learned functionals are trained for systems with an integer number of particles. A