ﻻ يوجد ملخص باللغة العربية
Let $mathcal{R}$ be a strongly compact $C^2$ map defined in an open subset of an infinite-dimensional Banach space such that the image of its derivative $D_F mathcal{R}$ is dense for every $F$. Let $Omega$ be a compact, forward invariant and partially hyperbolic set of $mathcal{R}$ such that $mathcal{R}colon Omegarightarrow Omega$ is onto. The $delta$-shadow $W^s_delta(Omega)$ of $Omega$ is the union of the sets $$W^s_delta(G)= {Fcolon dist(mathcal{R}^iF, mathcal{R}^iG) leq delta, for every igeq 0 },$$ where $G in Omega$. Suppose that $W^s_delta(Omega)$ has transversal empty interior, that is, for every $C^{1+Lip}$ $n$-dimensional manifold $M$ transversal to the distribution of dominated directions of $Omega$ and sufficiently close to $W^s_delta(Omega)$ we have that $Mcap W^s_delta(Omega)$ has empty interior in $M$. Here $n$ is the finite dimension of the strong unstable direction. We show that if $delta$ is small enough then $$cup_{igeq 0}mathcal{R}^{-i}W^s_{delta} (Omega)$$ intercepts a $C^k$-generic finite dimensional curve inside the Banach space in a set of parameters with zero Lebesgue measure, for every $kgeq 0$. This extends to infinite-dimensional dynamical systems previous studies on the Lebesgue measure of stable laminations of invariants sets.
In the present paper, we are aiming to study limiting behavior of infinite dimensional Volterra operators. We introduce two classes $tilde {mathcal{V}}^+$ and $tilde{mathcal{V}}^-$of infinite dimensional Volterra operators. For operators taken from t
Let f be an infinitely-renormalizable quadratic polynomial and J_infty be the intersection of forward orbits of small Julia sets of simple renormalizations of f. We prove that J_infty contains no hyperbolic sets.
We analyse the intersection of positively and negatively sectional-hyperbolic sets for flows on compact manifolds. First we prove that such an intersection is hyperbolic if the intersecting sets are both transitive (this is false without such a hypot
We prove that every sectional-hyperbolic Lyapunov stable set contains a nontrivial homoclinic class.
We introduce random towers to study almost sure rates of correlation decay for random partially hyperbolic attractors. Using this framework, we obtain abstract results on almost sure exponential, stretched exponential and polynomial correlation decay