ﻻ يوجد ملخص باللغة العربية
We propose a new cosmological test of gravity, by using the observed mass fraction of X-ray emitting gas in massive galaxy clusters. The cluster gas fraction, believed to be a fair sample of the average baryon fraction in the Universe, is a well-understood observable, which has previously mainly been used to constrain background cosmology. In some modified gravity models, such as $f(R)$ gravity, gas temperature in a massive cluster is determined by the effective mass of that cluster, which can be larger than its true mass. On the other hand, X-ray luminosity is determined by the true gas density, which in both modified gravity and $Lambda$CDM models depends mainly on $Omega_{rm b}/Omega_{rm m}$ and hence the true total cluster mass. As a result, the standard practice of combining gas temperatures and X-ray surface brightnesses of clusters to infer their gas fractions can, in modified gravity models, lead to a larger - in $f(R)$ gravity this can be $1/3$ larger - value of $Omega_{rm b}/Omega_{rm m}$ than that inferred from other observations such as the CMB. A quick calculation shows that the Hu-Sawicki $n=1$ $f(R)$ model with $|bar{f}_{R0}|=3sim5times10^{-5}$ is in tension with the gas fraction data of the 42 clusters analysed by Allen et al. (2008). We also discuss the implications for other modified gravity models.
(abridged) We perform hydrodynamical simulations of minor-merger induced gas sloshing and the subsequent formation of cold fronts in the Virgo cluster. We show for the first time that sloshing reproduces all characteristics of the observed cold front
We study and model the properties of galaxy clusters in the normal-branch Dvali-Gabadadze-Porrati (nDGP) model of gravity, which is representative of a wide class of theories which exhibit the Vainshtein screening mechanism. Using the first cosmologi
In recent years, the availability of large, complete cluster samples has enabled numerous cosmological parameter inference analyses using cluster number counts. These have provided constraints on the cosmic matter density $Omega_m$ and the amplitude
High-resolution mapping of the hot gas in galaxy clusters is a key tool for cluster-based cosmological analyses. Taking advantage of the NIKA2 millimeter camera operated at the IRAM 30-m telescope, the NIKA2 SZ Large Program seeks to get a high-resol
We use a cluster sample selected independently of the intracluster medium content with reliable masses to measure the mean gas mass fraction and its scatter, the biases of the X-ray selection on gas mass fraction, and the covariance between the X-ray