ترغب بنشر مسار تعليمي؟ اضغط هنا

A multi-wavelength polarimetric study of the blazar CTA 102 during a Gamma-ray flare in 2012

94   0   0.0 ( 0 )
 نشر من قبل Carolina Casadio
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We perform a multi-wavelength polarimetric study of the quasar CTA 102 during an extraordinarily bright $gamma$-ray outburst detected by the {it Fermi} Large Area Telescope in September-October 2012 when the source reached a flux of F$_{>100~mathrm{MeV}} =5.2pm0.4times10^{-6}$ photons cm$^{-2}$ s$^{-1}$. At the same time the source displayed an unprecedented optical and NIR outburst. We study the evolution of the parsec scale jet with ultra-high angular resolution through a sequence of 80 total and polarized intensity Very Long Baseline Array images at 43 GHz, covering the observing period from June 2007 to June 2014. We find that the $gamma$-ray outburst is coincident with flares at all the other frequencies and is related to the passage of a new superluminal knot through the radio core. The powerful $gamma$-ray emission is associated with a change in direction of the jet, which became oriented more closely to our line of sight ($thetasim$1.2$^{circ}$) during the ejection of the knot and the $gamma$-ray outburst. During the flare, the optical polarized emission displays intra-day variability and a clear clockwise rotation of EVPAs, which we associate with the path followed by the knot as it moves along helical magnetic field lines, although a random walk of the EVPA caused by a turbulent magnetic field cannot be ruled out. We locate the $gamma$-ray outburst a short distance downstream of the radio core, parsecs from the black hole. This suggests that synchrotron self-Compton scattering of near-infrared to ultraviolet photons is the probable mechanism for the $gamma$-ray production.



قيم البحث

اقرأ أيضاً

The blazar Mrk 421 shows frequent, short flares in the TeV energy regime. Due to the fast nature of such episodes, we often fail to obtain sufficient simultaneous information about flux variations in several energy bands. To overcome this lack of mul ti-wavelength (MWL) coverage, especially for the pre- and post-flare periods, we have set up a monitoring program with the FACT telescope (TeV energies) and the Neil Gehrels Swift Observatory (X-rays). On 2019 June 9, Mrk 421 showed a TeV outburst reaching a flux level of more than two times the flux of the Crab Nebula at TeV energies. We acquired simultaneous data in the X-rays with additional observations by XMM-Newton and INTEGRAL. For the first time, we can study a TeV blazar in outburst taking advantage of highly sensitive X-ray data from XMM-Newton and INTEGRAL combined. Our dataset is complemented by pointed radio observations by Effelsberg at GHz frequencies. We present our first results, including the {gamma}-ray and X-ray light curves, a timing analysis of the X-ray data obtained with XMM-Newton , as well as the radio spectra before, during and after the flare.
After several years of quiescence, the blazar CTA 102 underwent an exceptional outburst in 2012 September-October. The flare was tracked from gamma-ray to near-infrared frequencies, including Fermi and Swift data as well as photometric and polarimetr ic data from several observatories. An intensive GASP-WEBT collaboration campaign in optical and NIR bands, with an addition of previously unpublished archival data and extension through fall 2015, allows comparison of this outburst with the previous activity period of this blazar in 2004-2005. We find remarkable similarity between the optical and gamma-ray behaviour of CTA 102 during the outburst, with a time lag between the two light curves of ~1 hour, indicative of co-spatiality of the optical and gamma-ray emission regions. The relation between the gamma-ray and optical fluxes is consistent with the SSC mechanism, with a quadratic dependence of the SSC gamma-ray flux on the synchrotron optical flux evident in the post-outburst stage. However, the gamma-ray/optical relationship is linear during the outburst; we attribute this to changes in the Doppler factor. A strong harder-when-brighter spectral dependence is seen both the in gamma-ray and optical non-thermal emission. This hardening can be explained by convexity of the UV-NIR spectrum that moves to higher frequencies owing to an increased Doppler shift as the viewing angle decreases during the outburst stage. The overall pattern of Stokes parameter variations agrees with a model of a radiating blob or shock wave that moves along a helical path down the jet.
The blazar 3C454.3 exhibited a strong flare seen in gamma-rays, X-rays, and optical/NIR bands during 3--12 December 2009. Emission in the V and J bands rose more gradually than did the gamma-rays and soft X-rays, though all peaked at nearly the same time. Optical polarization measurements showed dramatic changes during the flare, with a strong anti-correlation between optical flux and degree of polarization (which rose from ~ 3% to ~ 20%) during the declining phase of the flare. The flare was accompanied by large rapid swings in polarization angle of ~ 170 degree. This combination of behaviors appear to be unique. We have cm-band radio data during the same period but they show no correlation with variations at higher frequencies. Such peculiar behavior may be explained using jet models incorporating fully relativistic effects with a dominant source region moving along a helical path or by a shock-in-jet model incorporating three-dimensional radiation transfer if there is a dominant helical magnetic field. We find that spectral energy distributions at different times during the flare can be fit using modified one-zone models where only the magnetic field strength and particle break frequencies and normalizations need change. An optical spectrum taken at nearly the same time provides an estimate for the central black hole mass of ~ 2.3 * 10^9 M_sun. We also consider two weaker flares seen during the $sim 200$ d span over which multi-band data are available. In one of them, the V and J bands appear to lead the $gamma$-ray and X-ray bands by a few days; in the other, all variations are simultaneous.
Long-lasting, very bright multiwavelength flares of blazar jets are a curious phenomenon. The interaction of a large gas cloud with the jet of a blazar may serve as a reservoir of particles entrained by the jet. The size and density structure of the cloud then determine the duration and strength of the particle injection into the jet and the subsequent radiative outburst of the blazar. In this presentation, a comprehensive parameter study is provided showing the rich possibilities that this model offers. Additionally, we use this model to explain the 4-months long, symmetrical flare of the flat spectrum radio quasar CTA 102 in late 2016. During this flare, CTA 102 became one of the brightest blazars in the sky despite its large redshift of $z=1.032$.
We present a multi-wavelength study of the FSRQ CTA 102 using Fermi-LAT and simultaneous Swift-XRT/UVOT observations. The Fermi-LAT telescope detected one of the brightest flares from this object during Sep, 2016 to Mar, 2017. In the 190 days of obse rvation period the source underwent four major flares. A detailed analysis of the temporal and spectral properties of these flares indicates the flare at MJD 57751.594 has a $gamma$-ray flux of (30.12$pm$4.48)$times 10^{-6}$ ph cm$^{-2}$ s$^{-1}$ (from 90 minutes binning) in the energy range of 0.1--300 GeV. This has been found to be the highest flux ever detected from CTA 102. Time dependent leptonic modelling of the pre-flare, rising state, flares and decaying state has been done. A single emission region of size $6.5times 10^{16}$ cm has been used in our work to explain the multi-wavelength spectral energy distributions. During flares the luminosity in electrons increases nearly seventy times compared to the pre-flare state.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا