ترغب بنشر مسار تعليمي؟ اضغط هنا

LOFAR discovery of a 700-kpc remnant radio galaxy at low redshift

356   0   0.0 ( 0 )
 نشر من قبل Marisa Brienza
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Remnant radio galaxies represent the final dying phase of radio galaxy evolution, in which the jets are no longer active. Due to their rarity in flux limited samples and the difficulty of identification, this dying phase remains poorly understood and the luminosity evolution largely unconstrained. Here we present the discovery and detailed analysis of a large (700 kpc) remnant radio galaxy with a low surface brightness that has been identified in LOFAR images at 150 MHz. By combining LOFAR data with new follow-up Westerbork observations and archival data at higher frequencies, we investigated the source morphology and spectral properties from 116 to 4850 MHz. By modelling the radio spectrum we probed characteristic timescales of the radio activity. The source has a relatively smooth, diffuse, amorphous appearance together with a very weak central compact core which is associated with the host galaxy located at z=0.051. From our ageing and morphological analysis it is clear that the nuclear engine is currently switched off or, at most, active at a very low power state. The host galaxy is currently interacting with another galaxy located at a projected separation of 15 kpc and a radial velocity offset of 300 km/s. This interaction may have played a role in the triggering and/or shut down of the radio jets. The spectral shape of this remnant radio galaxy differs from the majority of the previously identified remnant sources, which show steep or curved spectra at low to intermediate frequencies. In light of this finding and in preparation for new-generation deep low-frequency surveys, we discuss the selection criteria to be used to select representative samples of these sources.



قيم البحث

اقرأ أيضاً

In this Letter, we report the discovery of a radio halo in the high-redshift galaxy cluster PSZ2 G099.86+58.45 ($z=0.616$) with the LOw Frequency ARray (LOFAR) at 120-168 MHz. This is one of the most distant radio halos discovered so far. The diffuse emission extends over $sim$ 1 Mpc and has a morphology similar to that of the X-ray emission as revealed by XMM-Newton data. The halo is very faint at higher frequencies and is barely detected by follow-up 1-2 GHz Karl G.~Jansky Very Large Array (JVLA) observations, which enable us to constrain the radio spectral index to be $alphaleq 1.5-1.6$, i.e.; with properties between canonical and ultra-steep spectrum radio halos. Radio halos are currently explained as synchrotron radiation from relativistic electrons that are re-accelerated in the intra-cluster medium (ICM) by turbulence driven by energetic mergers. We show that in such a framework radio halos are expected to be relatively common at $sim150$ MHz ($sim30-60%$) in clusters with mass and redshift similar to PSZ2 G099.86+58.45; however, at least 2/3 of these radio halos should have steep spectrum and thus be very faint above $sim 1$ GHz frequencies. Furthermore, since the luminosity of radio halos at high redshift depends strongly on the magnetic field strength in the hosting clusters, future LOFAR observations will also provide vital information on the origin and amplification of magnetic fields in galaxy clusters.
We report the discovery of one of the largest and most distant Giant Radio Galaxy (GRG) in the Lynx field which was discovered using deep Giant Metre-wave Radio Telescope (GMRT) 150 MHz observations. The core is detected at 150 MHz and also in the VL A FIRST survey. Spectroscopic observations carried out using the IUCAA Giravali Observatory(IGO) provided a redshift value of 0.57. This redshift was later confirmed with data from the Sloan Digital Sky Survey (Data Release 12). The angular size of the GRG is 5.5 arcmin and at the redshift of 0.57, its linear size is 2.2 Mpc. At this high redshift, only a few radio sources are known to have such large linear size. In order to estimate the spectral index of the bridge emission as well as the spectral age of the source, we observed this source at L-band, 610 MHz and 325 MHz bands with the GMRT. We present the spectral ageing analysis of the source which puts an upper limit of 20 Myr on the spectral age. The better resolution maps presented here as opposed to the original 150 MHz map shows evidence for a second episode of emission. We also find that the core is detected at all four frequencies with a spectral index of 0.85, which is steeper than normal, hence we speculate that the core may be a compact steep spectrum source (CSS), which makes this giant radio galaxy a candidate triple-double radio galaxy.
We report the discovery and spectroscopic confirmation of a very large star-forming Lyman Break galaxy, G6025, at z_spec=3.721+/-0.003. In the rest-frame ~2100A, G6025 subtends ~24 kpc in physical extent when measured from the 1.5-sigma isophote, in agreement with the parametric size measurements which yield the half-light radius of 4.9+/-0.5 kpc and the semi-major axis of 12.5+/-0.1 kpc. G6025 is also very UV-luminous (~5L*(z~4}) and young (~140+/-60 Myr). Despite its unusual size and luminosity, the stellar population parameters and dust reddening (M_star~M*(z~4)$, and E(B-V)=0.18+/-0.05) estimated from the integrated light, are similar to those of smaller galaxies at comparable redshifts. The ground-based morphology and spectroscopy show two dominant components, both located off-center, embedded in more diffuse emission. We speculate that G6025 may be a scaled-up version of chain galaxies seen in deep HST imaging, or alternatively, a nearly equal-mass merger involving two super-L* galaxies in its early stage. G6025 lies close to but not within a known massive protocluster at z=3.78. We find four companions within 6 Mpc from G6025, two of which lie within 1.6 Mpc. While the limited sensitivity of the existing spectroscopy does not allow us to robustly characterize the local environment of G6025, it likely resides in a locally overdense environment. The luminosity, size, and youth of G6025 make it uniquely suited to study the early formation of massive galaxies in the universe.
Radio continuum (RC) emission in galaxies allows us to measure star formation rates (SFRs) unaffected by extinction due to dust, of which the low-frequency part is uncontaminated from thermal (free-free) emission. We calibrate the conversion from the spatially resolved 140 MHz RC emission to the SFR surface density ($Sigma_{rm SFR}$) at 1 kpc scale. We used recent observations of three galaxies (NGC 3184, 4736, and 5055) from the LOFAR Two-metre Sky Survey (LoTSS), and archival LOw-Frequency ARray (LOFAR) data of NGC 5194. Maps were created with the facet calibration technique and converted to radio $Sigma_{rm SFR}$ maps using the Condon relation. We compared these maps with hybrid $Sigma_{rm SFR}$ maps from a combination of GALEX far-ultraviolet and Spitzer 24 $murm m$ data using plots tracing the relation at $1.2times 1.2$-kpc$^2$ resolution. The RC emission is smoothed with respect to the hybrid $Sigma_{rm SFR}$ owing to the transport of cosmic-ray electrons (CREs). This results in a sublinear relation $(Sigma_{rm SFR})_{rm RC} propto [(Sigma_{rm SFR})_{rm hyb}]^{a}$, where $a=0.59pm 0.13$ (140 MHz) and $a=0.75pm 0.10$ (1365 MHz). Both relations have a scatter of $sigma = 0.3~rm dex$. If we restrict ourselves to areas of young CREs ($alpha > -0.65$; $I_ u propto u^alpha$), the relation becomes almost linear at both frequencies with $aapprox 0.9$ and a reduced scatter of $sigma = 0.2~rm dex$. We then simulate the effect of CRE transport by convolving the hybrid $Sigma_{rm SFR}$ maps with a Gaussian kernel until the RC-SFR relation is linearised; CRE transport lengths are $l=1$-5 kpc. Solving the CRE diffusion equation, we find diffusion coefficients of $D=(0.13$-$1.5) times 10^{28} rm cm^2,s^{-1}$ at 1 GeV. A RC-SFR relation at $1.4$ GHz can be exploited to measure SFRs at redshift $z approx 10$ using $140$ MHz observations.
We report on the discovery in the LOFAR Multifrequency Snapshot Sky Survey (MSSS) of a giant radio galaxy (GRG) with a projected size of $2.56 pm 0.07$ Mpc projected on the sky. It is associated with the galaxy triplet UGC 9555, within which one is i dentified as a broad-line galaxy in the Sloan Digital Sky Survey (SDSS) at a redshift of $0.05453 pm 1 times 10^{-5} $, and with a velocity dispersion of $215.86 pm 6.34$ km/s. From archival radio observations we see that this galaxy hosts a compact flat-spectrum radio source, and we conclude that it is the active galactic nucleus (AGN) responsible for generating the radio lobes. The radio luminosity distribution of the jets, and the broad-line classification of the host AGN, indicate this GRG is orientated well out of the plane of the sky, making its physical size one of the largest known for any GRG. Analysis of the infrared data suggests that the host is a lenticular type galaxy with a large stellar mass ($log~mathrm{M}/mathrm{M}_odot = 11.56 pm 0.12$), and a moderate star formation rate ($1.2 pm 0.3~mathrm{M}_odot/mathrm{year}$). Spatially smoothing the SDSS images shows the system around UGC 9555 to be significantly disturbed, with a prominent extension to the south-east. Overall, the evidence suggests this host galaxy has undergone one or more recent moderate merger events and is also experiencing tidal interactions with surrounding galaxies, which have caused the star formation and provided the supply of gas to trigger and fuel the Mpc-scale radio lobes.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا