ترغب بنشر مسار تعليمي؟ اضغط هنا

CeRu$_4$Sn$_6$: a strongly correlated material with nontrivial topology

78   0   0.0 ( 0 )
 نشر من قبل Fabio Strigari
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Topological insulators form a novel state of matter that provides new opportunities to create unique quantum phenomena. While the materials used so far are based on semiconductors, recent theoretical studies predict that also strongly correlated systems can show non-trivial topological properties, thereby allowing even the emergence of surface phenomena that are not possible with topological band insulators. From a practical point of view, it is also expected that strong correlations will reduce the disturbing impact of defects or impurities, and at the same increase the Fermi velocities of the topological surface states. The challenge is now to discover such correlated materials. Here, using advanced x-ray spectroscopies in combination with band structure calculations, we infer that CeRu$_4$Sn$_6$ is a strongly correlated material with non-trivial topology.

قيم البحث

اقرأ أيضاً

A new type of topological state in strongly corrected condensed matter systems, heavy Weyl fermion state, has been found in a heavy fermion material CeRu$_4$Sn$_6$, which has no inversion symmetry. Both two different types of Weyl points, type I and II, can be found in the quasi-particle band structure obtained by the LDA+Guztwiller calculations, which can treat the strong correlation effects among the f-electrons from Cerium atoms. The surface calculations indicate that the topologically protected Fermi arc states exist on the (010) but not on the (001) surfaces.
Kondo insulators and in particular their non-cubic representatives have remained poorly understood. Here we report on the development of an anisotropic energy pseudogap in the tetragonal compound CeRu$_4$Sn$_6$ employing optical reflectivity measurem ents in broad frequency and temperature ranges, and local density approximation plus dynamical mean field theory calculations. The calculations provide evidence for a Kondo insulator-like response within the $a-a$ plane and a more metallic response along the c axis and qualitatively reproduce the experimental observations, helping to identify their origin.
Bulk sensitive hard x-ray photoelectron spectroscopy data of the Ce 3$p$ core level of CeRu$_4$Sn$_6$ are presented. Using a combination of full multiplet and configuration iteration model we were able to obtain an accurate lineshape analysis of the data, thereby taking into account correlations for the strong plasmon intensities. We conclude that CeRu$_4$Sn$_6$ is a moderately mixed valence compound with a weight of 8% for the Ce $f^0$ configuration in the ground state.
Using density functional theory based calculations, we show that the correlated mixed-valent compound SmO is a 3D strongly topological semi-metal as a result of a 4$f$-5$d$ band inversion at the X point. The [001] surface Bloch spectral density revea ls two weakly interacting Dirac cones that are quasi-degenerate at the M_bar-point and another single Dirac cone at the Gamma_bar-point. We also show that the topological non-triviality in SmO is very robust and prevails for a wide range of lattice parameters, making it an ideal candidate to investigate topological nontrivial correlated flat bands in thin-film form. Moreover, the electron filling is tunable by strain. In addition, we find conditions for which the inversion is of the 4f-6s type, making SmO to be a rather unique system. The similarities of the crystal symmetry and the lattice constant of SmO to the well studied ferromagnetic semiconductor EuO, makes SmO/EuO thin film interfaces an excellent contender towards realizing the quantum anomalous Hall effect in a strongly correlated electron system.
We have investigated the local low-energy excitations in CeRu$_4$Sn$_6$, a material discussed recently in the framework of strongly correlated Weyl semimetals, by means of Ce $M_5$ resonant inelastic x-ray scattering (RIXS). The availability of both $^2$F$_frac{5}{2}$ and $^2$F$_frac{7}{2}$ excitations of the Ce $4f^1$ configuration in the spectra allows for the determination of the crystal-electric field parameters that explain quantitatively the temperature dependence and anisotropy of the magnetic susceptibility. The absence of an azimuthal dependence in the spectra indicates that all crystal-electric field states are close to being rotational symmetric. We show further that the non-negligible impact of the $check A_6^0$ parameter on the ground state of CeRu$_4$Sn$_6$ leads to a reduction of the magnetic moment due to multiplet intermixing. The RIXS results are consistent with inelastic neutron scattering (INS) data and are compared to the predictions from textsl{ab-initio} based electronic structure calculations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا