ﻻ يوجد ملخص باللغة العربية
We prove an abstract modularity result for classes of Heegner divisors in the generalized Jacobian of a modular curve associated to a cuspidal modulus. Extending the Gross-Kohnen-Zagier theorem, we prove that the generating series of these classes is a weakly holomorphic modular form of weight 3/2. Moreover, we show that any harmonic Maass forms of weight 0 defines a functional on the generalized Jacobian. Combining these results, we obtain a unifying framework and new proofs for the Gross-Kohnen-Zagier theorem and Zagiers modularity of traces of singular moduli, together with new geometric interpretations of the traces with non-positive index.
Let $f$ and $g$ be weakly holomorphic modular functions on $Gamma_0(N)$ with the trivial character. For an integer $d$, let $Tr_d(f)$ denote the modular trace of $f$ of index $d$. Let $r$ be a rational number equivalent to $iinfty$ under the action o
We study the Jacobian $J$ of the smooth projective curve $C$ of genus $r-1$ with affine model $y^r = x^{r-1}(x + 1)(x + t)$ over the function field $mathbb{F}_p(t)$, when $p$ is prime and $rge 2$ is an integer prime to $p$. When $q$ is a power of $p$
The aim of this article is to prove, using complex Abel-Jacobi maps, that the subgroup generated by Heegner cycles associated with a fixed imaginary quadratic field in the Griffiths group of a Kuga-Sato variety over a modular curve has infinite rank.
Given a newform f, we extend Howards results on the variation of Heegner points in the Hida family of f to a general quaternionic setting. More precisely, we build big Heegner points and big Heegner classes in terms of compatible families of Heegner
Let $K$ be a field of characteristic different from $2$, $bar{K}$ its algebraic closure. Let $n ge 3$ be an odd prime such that $2$ is a primitive root modulo $n$. Let $f(x)$ and $h(x)$ be degree $n$ polynomials with coefficients in $K$ and without r