ﻻ يوجد ملخص باللغة العربية
Axions are one of the most attractive dark matter candidates. The evolution of their number density in the early universe can be determined by calculating the topological susceptibility $chi(T)$ of QCD as a function of the temperature. Lattice QCD provides an ab initio technique to carry out such a calculation. A full result needs two ingredients: physical quark masses and a controlled continuum extrapolation from non-vanishing to zero lattice spacings. We determine $chi(T)$ in the quenched framework (infinitely large quark masses) and extrapolate its values to the continuum limit. The results are compared with the prediction of the dilute instanton gas approximation (DIGA). A nice agreement is found for the temperature dependence, whereas the overall normalization of the DIGA result still differs from the non-perturbative continuum extrapolated lattice results by a factor of order ten. We discuss the consequences of our findings for the prediction of the amount of axion dark matter.
APE smearing and overlap-Dirac operator are combined to filter QCD vacuum configurations. The results obtained from overlap fermions and improved 5Li cooling are compared, both of them exhibit structures of dilute liquid of instanton. Finally the ove
We examined the instanton contribution to the QCD configurations generated from lattice QCD for $N_F=0$, $N_F=2+1$ and $N_F=2+1+1$ dynamical quark flavors from two different and complementary approaches. First via the use of Gradient flow, we compute
We study cold nuclear matter based on the holographic gauge theory, where baryons are introduced as the instantons in the probe D8/D8 branes according to the Sakai-Sugimoto model. Within a dilute gas approximation of instantons, we search for the sta
The axion is a hypothetical elementary particle postulated by the Peccei-Quinn theory to resolve the strong CP problem in QCD. If axions exist and have low mass, they are a candidate for dark matter as well. So far our knowledge of the properties of
We study the topological susceptibility in 2+1 flavor QCD above the chiral crossover transition temperature using Highly Improved Staggered Quark action and several lattice spacings, corresponding to temporal extent of the lattice, $N_tau=6,8,10$ and