ترغب بنشر مسار تعليمي؟ اضغط هنا

Design of a prototype device to calibrate the Large Size Telescope camera of the Cherenkov Telescope Array

70   0   0.0 ( 0 )
 نشر من قبل Maurizio Iori
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The Cherenkov Telescope Array is a project that aims to exploring the highest energy region of electromagnetic spectrum. Two arrays, one for each hemisphere, will cover the full sky in a range from few tens of GeV to hundreds of TeV improving the sensitivity and angular resolution of the present operating arrays. A prototype of the Large Size Telescope (LST) for the study of gamma ray astronomy above some tens of GeV will be installed at the Canary Island of La Palma in 2016. The LST camera, made by an array of photomultipliers (PMTs), requires an accurate and systematic calibration over a wide dynamic range. In this contribution, we present an optical calibration system made by a 355 nm wavelength laser with 400 ps pulse width, 1 muJ output energy, up to 4k Hz repetition rate and a set of neutral density filters to obtain a wide range of photon intensities, up to 1000 photoelectrons/PMT, to be sent to the camera plane 28 m away. The number of photons after the diffuser of the calibration box, located in the center of the reflective plane, is monitored by a photodiode. The stability of the laser and the ambient parameters inside this calibration box are checked by a multi-task processor and a trigger signal is sent to the camera data acquisition system. The box frame is designed with special attention to obtain a robust device with stable optical and mechanical features.



قيم البحث

اقرأ أيضاً

A Large Size air Cherenkov Telescope (LST) prototype, proposed for the Cherenkov Telescope Array (CTA), is under construction at the Canary Island of La Palma (Spain) this year. The LST camera, which comprises an array of about 500 photomultipliers ( PMTs), requires a precise and regular calibration over a large dynamic range, up to $10^3$ photo-electrons (pes), for each PMT. We present a system built to provide the optical calibration of the camera consisting of a pulsed laser (355 nm wavelength, 400 ps pulse width), a set of filters to guarantee a large dynamic range of photons on the sensors, and a diffusing sphere to uniformly spread the laser light, with flat fielding within 3%, over the camera focal plane 28 m away. The prototype of the system developed at INFN is hermetically closed and filled with dry air to make the system completely isolated from the external environment. In the paper we present the results of the tests for the evaluation of the photon density at the camera plane, the system isolation from the environment, and the shape of the signal as detected by the PMTs. The description of the communication of the system with the rest of detector is also given.
The design of the camera support structures for the Cherenkov Telescope Array (CTA) Large Size Telescopes (LSTs) is based on an elliptical arch geometry reinforced along its orthogonal projection by two symmetric sets of stabilizing ropes. The main r equirements in terms of minimal camera displacement, minimal weight, minimal shadowing on the telescope mirror, maximal strength of the structures and fast dynamical stabilization have led to the application of Carbon Fibre Plastic Reinforced (CFPR) technologies. This work presents the design, static and dynamic performance of the telescope fulfilling critical specifications for the major scientific objectives of the CTA LST, e.g. Gamma Ray Burst detection.
413 - G. Ambrosi , Y. Awane , H. Baba 2013
The two arrays of the Very High Energy gamma-ray observatory Cherenkov Telescope Array (CTA) will include four Large Size Telescopes (LSTs) each with a 23 m diameter dish and 28 m focal distance. These telescopes will enable CTA to achieve a low-ener gy threshold of 20 GeV, which is critical for important studies in astrophysics, astroparticle physics and cosmology. This work presents the key specifications and performance of the current LST design in the light of the CTA scientific objectives.
The Schwarzschild-Couder Telescope (SCT) is a candidate technology for a medium-sized telescope within the Cherenkov Telescope Array, the next generation ground based observatory for very high energy gamma ray astronomy. The SCT uses a novel two-mirr or design and is expected to yield improvements in field of view and image resolution compared to traditional Cherenkov telescopes based on single-mirror-dish optics. To match the improved optical resolution, challenging requirements of high channel count and density at low power consumption must be overcome by the camera. The prototype camera, currently commissioned and tested on the prototype SCT, has been developed based on millimeter scale SiPM pixels and a custom high density digitizer ASIC, TARGET, to provide 1600 pixels spanning a 2.7 degree field of view while being able to sample nanosecond photon pulses. It is mechanically designed to allow for an upgrade to 11,328 pixels covering a field of view of 8 degrees and demonstrating the full potential of the technology. The camera was installed on the telescope in 2018. We will present its design and performance including first light data.
85 - T. Saito , C. Delgado , O. Blanch 2021
The first Large Size Telescope (LST-1) of the Cherenkov Telescope Array has been operational since October 2018 at La Palma, Spain. We report on the results obtained during the camera commissioning. The noise level of the readout is determined as a 0 .2 p.e. level. The gain of PMTs are well equalized within 2% variation, using the calibration flash system. The effect of the night sky background on the signal readout noise as well as the PMT gain estimation are also well evaluated. Trigger thresholds are optimized for the lowest possible gamma-ray energy threshold and the trigger distribution synchronization has been achieved within 1~ns precision. Automatic rate control realizes the stable observation with 1.5% rate variation over 3 hours. The performance of the novel DAQ system demonstrates a less than 10% dead time for 15 kHz trigger rate even with sophisticated online data correction.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا