ترغب بنشر مسار تعليمي؟ اضغط هنا

Cooperative Spectrum Sharing Relaying Protocols With Energy Harvesting Cognitive User

100   0   0.0 ( 0 )
 نشر من قبل Tarun Kalluri Mr.
 تاريخ النشر 2015
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

The theory of wireless information and power transfer in energy constrained wireless networks has caught the interest of researchers due to its potential in increasing the lifetime of sensor nodes and mitigate the environment hazards caused by conventional cell batteries. Similarly, the advancements in areas of cooperative spectrum sharing protocols has enabled efficient use of frequency spectrum between a licensed primary user and a secondary user. In this paper, we consider an energy constrained secondary user which harvests energy from the primary signal and relays the primary signal in exchange for the spectrum access. We consider Nakagami-m fading model and propose two key protocols, namely time-splitting cooperative spectrum sharing (TS-CSS) and power-sharing cooperative spectrum sharing (PS-CSS), and derive expressions for the outage probabilities of the primary and secondary user in decode-forward and amplify-forward relaying modes. From the obtained results, it has been shown that the secondary user can carry its own transmission without adversely affecting the performance of the primary user and that PS-CSS protocol outperforms the TS-PSS protocol in terms of outage probability over a wide range of Signal to noise ratio(SNRs). The effect of various system parameters on the outage performance of these protocols have also been studied.



قيم البحث

اقرأ أيضاً

In this paper, a novel framework for normative modeling of the spectrum sensing and sharing problem in cognitive radios (CRs) as a transferable utility (TU) cooperative game is proposed. Secondary users (SUs) jointly sense the spectrum and cooperativ ely detect the primary user (PU) activity for identifying and accessing unoccupied spectrum bands. The games are designed to be balanced and super-additive so that resource allocation is possible and provides SUs with an incentive to cooperate and form the grand coalition. The characteristic function of the game is derived based on the worths of SUs, calculated according to the amount of work done for the coalition in terms of reduction in uncertainty about PU activity. According to her worth in the coalition, each SU gets a pay-off that is computed using various one-point solutions such as Shapley value, tau-value and Nucleolus. Depending upon their data rate requirements for transmission, SUs use the earned pay-off to bid for idle channels through a socially optimal Vickrey-Clarke-Groves (VCG) auction mechanism. Simulation results show that, in comparison with other resource allocation models, the proposed cooperative game-theoretic model provides the best balance between fairness, cooperation and performance in terms of data rates achieved by each SU.
Energy harvesting from the surroundings is a promising solution to perpetually power-up wireless sensor communications. This paper presents a data-driven approach of finding optimal transmission policies for a solar-powered sensor node that attempts to maximize net bit rates by adapting its transmission parameters, power levels and modulation types, to the changes of channel fading and battery recharge. We formulate this problem as a discounted Markov decision process (MDP) framework, whereby the energy harvesting process is stochastically quantized into several representative solar states with distinct energy arrivals and is totally driven by historical data records at a sensor node. With the observed solar irradiance at each time epoch, a mixed strategy is developed to compute the belief information of the underlying solar states for the choice of transmission parameters. In addition, a theoretical analysis is conducted for a simple on-off policy, in which a predetermined transmission parameter is utilized whenever a sensor node is active. We prove that such an optimal policy has a threshold structure with respect to battery states and evaluate the performance of an energy harvesting node by analyzing the expected net bit rate. The design framework is exemplified with real solar data records, and the results are useful in characterizing the interplay that occurs between energy harvesting and expenditure under various system configurations. Computer simulations show that the proposed policies significantly outperform other schemes with or without the knowledge of short-term energy harvesting and channel fading patterns.
In this paper, we present a multi-user resource allocation framework using fragmented-spectrum synchronous OFDM-CDMA modulation over a frequency-selective fading channel. In particular, given pre-existing communications in the spectrum where the syst em is operating, a channel sensing and estimation method is used to obtain information of subcarrier availability. Given this information, some real-valued multi-level orthogonal codes, which are orthogonal codes with values of ${pm1,pm2,pm3,pm4, ... }$, are provided for emerging new users, i.e., cognitive radio users. Additionally, we have obtained a closed form expression for bit error rate of cognitive radio receivers in terms of detection probability of primary users, CR users sensing time and CR users signal to noise ratio. Moreover, simulation results obtained in this paper indicate the precision with which the analytical results have been obtained in modeling the aforementioned system.
In this paper, we study a X-duplex relay system with one source, one amplify-and-forward (AF) relay and one destination, where the relay is equipped with a shared antenna and two radio frequency (RF) chains used for transmission or reception. X-duple x relay can adaptively configure the connection between its RF chains and antenna to operate in either HD or FD mode, according to the instantaneous channel conditions. We first derive the distribution of the signal to interference plus noise ratio (SINR), based on which we then analyze the outage probability, average symbol error rate (SER), and average sum rate. We also investigate the X-duplex relay with power allocation and derive the lower bound and upper bound of the corresponding outage probability. Both analytical and simulated results show that the X-duplex relay achieves a better performance over pure FD and HD schemes in terms of SER, outage probability and average sum rate, and the performance floor caused by the residual self interference can be eliminated using flexible RF chain configurations.
119 - Xiaohu Ge , Bin Yang , Junliang Ye 2015
It is a great challenge to evaluate the network performance of cellular mobile communication systems. In this paper, we propose new spatial spectrum and energy efficiency models for Poisson-Voronoi tessellation (PVT) random cellular networks. To eval uate the user access the network, a Markov chain based wireless channel access model is first proposed for PVT random cellular networks. On that basis, the outage probability and blocking probability of PVT random cellular networks are derived, which can be computed numerically. Furthermore, taking into account the call arrival rate, the path loss exponent and the base station (BS) density in random cellular networks, spatial spectrum and energy efficiency models are proposed and analyzed for PVT random cellular networks. Numerical simulations are conducted to evaluate the network spectrum and energy efficiency in PVT random cellular networks.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا