ﻻ يوجد ملخص باللغة العربية
An urn contains black and red balls. Let $Z_n$ be the proportion of black balls at time $n$ and $0leq L<Uleq 1$ random barriers. At each time $n$, a ball $b_n$ is drawn. If $b_n$ is black and $Z_{n-1}<U$, then $b_n$ is replaced together with a random number $B_n$ of black balls. If $b_n$ is red and $Z_{n-1}>L$, then $b_n$ is replaced together with a random number $R_n$ of red balls. Otherwise, no additional balls are added, and $b_n$ alone is replaced. In this paper, we assume $R_n=B_n$. Then, under mild conditions, it is shown that $Z_noverset{a.s.}longrightarrow Z$ for some random variable $Z$, and begin{gather*} D_n:=sqrt{n},(Z_n-Z)longrightarrowmathcal{N}(0,sigma^2)quadtext{conditionally a.s.} end{gather*} where $sigma^2$ is a certain random variance. Almost sure conditional convergence means that begin{gather*} Pbigl(D_nincdotmidmathcal{G}_nbigr)overset{weakly}longrightarrowmathcal{N}(0,,sigma^2)quadtext{a.s.} end{gather*} where $Pbigl(D_nincdotmidmathcal{G}_nbigr)$ is a regular version of the conditional distribution of $D_n$ given the past $mathcal{G}_n$. Thus, in particular, one obtains $D_nlongrightarrowmathcal{N}(0,sigma^2)$ stably. It is also shown that $L<Z<U$ a.s. and $Z$ has non-atomic distribution.
We consider a variant of the randomly reinforced urn where more balls can be simultaneously drawn out and balls of different colors can be simultaneously added. More precisely, at each time-step, the conditional distribution of the number of extracte
We introduce a class of birth-and-death Polya urns, which allow for both sampling and removal of observations governed by an auxiliary inhomogeneous Bernoulli process, and investigate the asymptotic behaviour of the induced allelic partitions. By exp
We prove a Central Limit Theorem for the sequence of random compositions of a two-color randomly reinforced urn. As a consequence, we are able to show that the distribution of the urn limit composition has no point masses.
An urn contains balls of d colors. At each time, a ball is drawn and then replaced together with a random number of balls of the same color. Assuming that some colors are dominated by others, we prove central limit theorems. Some statistical applications are discussed.
We investigate the tail behaviour of the steady state distribution of a stochastic recursion that generalises Lindleys recursion. This recursion arises in queuing systems with dependent interarrival and service times, and includes alternating service