ترغب بنشر مسار تعليمي؟ اضغط هنا

Broadband architecture for galvanically accessible superconducting microwave resonators

64   0   0.0 ( 0 )
 نشر من قبل Sal Bosman
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In many hybrid quantum systems, a superconducting circuit is required that combines DC-control with a coplanar waveguide (CPW) microwave resonator. The strategy thus far for applying a DC voltage or current bias to microwave resonators has been to apply the bias through a symmetry point in such a way that it appears as an open circuit for certain frequencies. Here, we introduce a microwave coupler for superconducting CPW cavities in the form of a large shunt capacitance to ground. Such a coupler acts as a broadband mirror for microwaves while providing galvanic connection to the center conductor of the resonator. We demonstrate this approach with a two-port $lambda/4$-transmission resonator with linewidths in the MHz regime ($Qsim10^3$) that shows no spurious resonances and apply a voltage bias up to $80$ V without affecting the quality factor of the resonator. This resonator coupling architecture, which is simple to engineer, fabricate and analyse, could have many potential applications in experiments involving superconducting hybrid circuits.

قيم البحث

اقرأ أيضاً

We have generated frequency combs spanning 0.5 to 20 GHz in superconducting half wave resonators at T=3 K. Thin films of niobium-titanium nitride enabled this development due to their low loss, high nonlinearity, low frequency dispersion, and high cr itical temperature. The combs nucleate as sidebands around multiples of the pump frequency. Selection rules for the allowed frequency emission are calculated using perturbation theory and the measured spectrum is shown to agree with the theory. The sideband spacing is measured to be accurate to 1 part in 10 million. The sidebands coalesce into a continuous comb structure that has been observed to cover at least 6 octaves in frequency.
We discuss how reactive and dissipative non-linearities affect the intrinsic response of superconducting thin-film resonators. We explain how most, if not all, of the complex phenomena commonly seen can be described by a model in which the underlying resonance is a single-pole Lorentzian, but whose centre frequency and quality factor change as external parameters, such as readout power and frequency, are varied. What is seen during a vector-network-analyser measurement is series of samples taken from an ideal Lorentzian that is shifting and spreading as the readout frequency is changed. According to this model, it is perfectly proper to refer to, and measure, the resonant frequency and quality factor of the underlying resonance, even though the swept-frequency curves appear highly distorted and hysteretic. In those cases where the resonance curve is highly distorted, the specific shape of the trajectory in the Argand plane gives valuable insights into the second-order physical processes present. We discuss the formulation and consequences of this approach in the case of non-linear kinetic inductance, two-level-system loss, quasiparticle generation, and a generic model based on a power-law form. The generic model captures the key features of specific dissipative non-linearities, but additionally leads to insights into how general dissipative processes create characteristic forms in the Argand plane. We provide detailed formulations in each case, and indicate how they lead to the wide variety of phenomena commonly seen in experimental data. We also explain how the properties of the underlying resonance can be extracted from this data. Overall, our paper provides a self-contained compendium of behaviour that will help practitioners interpret and determine important parameters from distorted swept-frequency measurements.
Graphene is an attractive material for nanomechanical devices because it allows for exceptional properties, such as high frequencies and quality factors, and low mass. An outstanding challenge, however, has been to obtain large coupling between the m otion and external systems for efficient readout and manipulation. Here, we report on a novel approach, in which we capacitively couple a high-Q graphene mechanical resonator ($Q sim 10^5$) to a superconducting microwave cavity. The initial devices exhibit a large single-photon coupling of $sim 10$ Hz. Remarkably, we can electrostatically change the graphene equilibrium position and thereby tune the single photon coupling, the mechanical resonance frequency and the sign and magnitude of the observed Duffing nonlinearity. The strong tunability opens up new possibilities, such as the tuning of the optomechanical coupling strength on a time scale faster than the inverse of the cavity linewidth. With realistic improvements, it should be possible to enter the regime of quantum optomechanics.
Superconducting microwave resonators (SMR) with high quality factors have become an important technology in a wide range of applications. Molybdenum-Rhenium (MoRe) is a disordered superconducting alloy with a noble surface chemistry and a relatively high transition temperature. These properties make it attractive for SMR applications, but characterization of MoRe SMR has not yet been reported. Here, we present the fabrication and characterization of SMR fabricated with a MoRe 60-40 alloy. At low drive powers, we observe internal quality-factors as high as 700,000. Temperature and power dependence of the internal quality-factors suggest the presence of the two level systems from the dielectric substrate dominating the internal loss at low temperatures. We further test the compatibility of these resonators with high temperature processes such as for carbon nanotube CVD growth, and their performance in the magnetic field, an important characterization for hybrid systems.
Recent experiments on strongly coupled microwave and ferromagnetic resonance modes have focused on large volume bulk crystals such as yttrium iron garnet, typically of millimeter-scale dimensions. We extend these experiments to lower volumes of magne tic material by exploiting low-impedance lumped-element microwave resonators. The low impedance equates to a smaller magnetic mode volume, which allows us to couple to a smaller number of spins in the ferromagnet. Compared to previous experiments, we reduce the number of participating spins by two orders of magnitude, while maintaining the strength of the coupling rate. Strongly coupled devices with small volumes of magnetic material may allow the use of spin orbit torques, which require high current densities incompatible with existing structures.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا