ﻻ يوجد ملخص باللغة العربية
Whereas in standard quantum state tomography one estimates an unknown state by performing various measurements with known devices, and whereas in detector tomography one estimates the POVM elements of a measurement device by subjecting to it various known states, we consider here the case of SPAM (state preparation and measurement) tomography where neither the states nor the measurement device are assumed known. For $d$-dimensional systems measured by $d$-outcome detectors, we find there are at most $d^2(d^2-1)$ gauge parameters that can never be determined by any such experiment, irrespective of the number of unknown states and unknown devices. For the case $d=2$ we find new gauge-invariant quantities that can be accessed directly experimentally and that can be used to detect and describe SPAM errors. In particular, we identify conditions whose violations detect the presence of correlations between SPAM errors. From the perspective of SPAM tomography, standard quantum state tomography and detector tomography are protocols that fix the gauge parameters through the assumption that some set of fiducial measurements is known or that some set of fiducial states is known, respectively.
State preparation and measurement (SPAM) errors limit the performance of many gate-based quantum computing architecures, but are partly correctable after a calibration step that requires, for an exact implementation on a register of $n$ qubits, $2^n$
Crosstalk occurs in most quantum computing systems with more than one qubit. It can cause a variety of correlated and nonlocal crosstalk errors that can be especially harmful to fault-tolerant quantum error correction, which generally relies on error
The central challenge in building a quantum computer is error correction. Unlike classical bits, which are susceptible to only one type of error, quantum bits (qubits) are susceptible to two types of error, corresponding to flips of the qubit state a
The surface code is designed to suppress errors in quantum computing hardware and currently offers the most believable pathway to large-scale quantum computation. The surface code requires a 2-D array of nearest-neighbor coupled qubits that are capab
Quantum computing can become scalable through error correction, but logical error rates only decrease with system size when physical errors are sufficiently uncorrelated. During computation, unused high energy levels of the qubits can become excited,