ترغب بنشر مسار تعليمي؟ اضغط هنا

3D magnetic field configuration of small-scale reconnection events in the solar plasma atmosphere

115   0   0.0 ( 0 )
 نشر من قبل Toshifumi Shimizu
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English
 تأليف T. Shimizu




اسأل ChatGPT حول البحث

The outer solar atmosphere, i.e., the corona and the chromosphere, is replete with small energy-release events, which are accompanied by transient brightening and jet-like ejections. These events are considered to be magnetic reconnection events in the solar plasma, and their dynamics have been studied using recent advanced observations from the Hinode spacecraft and other observatories in space and on the ground. These events occur at different locations in the solar atmosphere, and vary in their morphology and amount of the released energy. The magnetic field configurations of these reconnection events are inferred based on observations of magnetic fields at the photospheric level. Observations suggest that these magnetic configurations can be classified into two groups. In the first group, two anti-parallel magnetic fields reconnect to each other, yielding a 2D emerging flux configuration. In the second group, helical or twisted magnetic flux tubes are parallel or at a relative angle to each other. Reconnection can occur only between anti-parallel components of the magnetic flux tubes and may be referred to as component reconnection. The latter configuration type may be more important for the larger class of small-scale reconnection events. The two types of magnetic configurations can be compared to counter-helicity and co-helicity configurations, respectively, in laboratory plasma collision experiments.



قيم البحث

اقرأ أيضاً

This publication provides an overview of magnetic fields in the solar atmosphere with the focus lying on the corona. The solar magnetic field couples the solar interior with the visible surface of the Sun and with its atmosphere. It is also responsib le for all solar activity in its numerous manifestations. Thus, dynamic phenomena such as coronal mass ejections and flares are magnetically driven. In addition, the field also plays a crucial role in heating the solar chromosphere and corona as well as in accelerating the solar wind. Our main emphasis is the magnetic field in the upper solar atmosphere so that photospheric and chromospheric magnetic structures are mainly discussed where relevant for higher solar layers. Also, the discussion of the solar atmosphere and activity is limited to those topics of direct relevance to the magnetic field. After giving a brief overview about the solar magnetic field in general and its global structure, we discuss in more detail the magnetic field in active regions, the quiet Sun and coronal holes.
The presence of photospheric magnetic reconnection has long been thought to give rise to short and impulsive events, such as Ellerman bombs (EBs) and Type II spicules. In this article, we combine high-resolution, high-cadence observations from the In terferometric BIdimensional Spectrometer (IBIS) and Rapid Oscillations in the Solar Atmosphere (ROSA) instruments at the Dunn Solar Telescope, National Solar Observatory, New Mexico with co-aligned Atmospheric Imaging Assembly (SDO/AIA) and Solar Optical Telescope (Hinode/SOT) data to observe small-scale events situated within an active region. These data are then compared with state-of-the-art numerical simulations of the lower atmosphere made using the MURaM code. It is found that brightenings, in both the observations and the simulations, of the wings of the H alpha line profile, interpreted as EBs, are often spatially correlated with increases in the intensity of the FeI 6302.5A line core. Bi-polar regions inferred from Hinode/SOT magnetic field data show evidence of flux cancellation associated, co-spatially, with these EBs, suggesting magnetic reconnection could be a driver of these high-energy events. Through the analysis of similar events in the simulated lower atmosphere, we are able to infer that line profiles analogous to the observations occur co-spatially with regions of strong opposite polarity magnetic flux. These observed events and their simulated counterparts are interpreted as evidence of photospheric magnetic reconnection at scales observable using current observational instrumentation.
150 - K.J. Li , J.C. Xu , W. Feng 2018
Solar chromosphere and coronal heating is a big question for astrophysics. Daily measurement of 985 solar spectral irradiances (SSIs) at the spectral intervals 1-39 nm and 116-2416 nm during March 1 2003 to October 28 2017 is utilized to investigate phase relation respectively with daily sunspot number, the Mount Wilson Sunspot Index, and the Magnetic Plage Strength Index. All SSIs which form in the whole heated region: the upper photosphere, chromosphere, transition region, and corona are found to be significantly more correlated to weak magnetic activity than to strong magnetic activity, and to dance in step with weak magnetic activity. All SSIs which form in the low photosphere (the unheated region), which indicate the energy leaked from the solar subsurface are found to be more related to strong magnetic activity instead and in anti-phase with weak magnetic activity. In the upper photosphere and chromosphere, strong magnetic activity should lead SSI by about a solar rotation, also displaying that weak magnetic activity should take effect on heating there. It is thus small-scale weak magnetic activity that effectively heats the upper solar atmosphere.
271 - Lei Ni , Jun Lin , Ilia I. Roussev 2016
We simulate several magnetic reconnection processes in the low solar chromosphere/photosphere, the radiation cooling, heat conduction and ambipolar diffusion are all included. Our numerical results indicate that both the high temperature($ gtrsim 8ti mes10^4$~K) and low temperature($sim 10^4$~K) magnetic reconnection events can happen in the low solar atmosphere ($100sim600$~km above the solar surface). The plasma $beta$ controlled by plasma density and magnetic fields is one important factor to decide how much the plasma can be heated up. The low temperature event is formed in a high $beta$ magnetic reconnection process, Joule heating is the main mechanism to heat plasma and the maximum temperature increase is only several thousand Kelvin. The high temperature explosions can be generated in a low $beta$ magnetic reconnection process, slow and fast-mode shocks attached at the edges of the well developed plasmoids are the main physical mechanisms to heat the plasma from several thousand Kelvin to over $8times10^4$~K. Gravity in the low chromosphere can strongly hinder the plasmoind instability and the formation of slow-mode shocks in a vertical current sheet. Only small secondary islands are formed; these islands, however, are not well developed as those in the horizontal current sheets. This work can be applied for understanding the heating mechanism in the low solar atmosphere and could possibly be extended to explain the formation of common low temperature EBs ($sim10^4$~K) and the high tenperature IRIS bombs ($gtrsim 8times10^4$) in the future.
We use state-of-the-art, three-dimensional non-local thermodynamic equilibrium (non-LTE) radiative magnetohydrodynamic simulations of the quiet solar atmosphere to carry out detailed tests of chromospheric magnetic field diagnostics from free-free ra diation at millimeter and submillimeter wavelengths (mm/submm). The vertical component of the magnetic field was deduced from the mm/submm brightness spectra and the degree of circular polarization synthesized at millimeter frequencies. We used the frequency bands observed by the Atacama Large Millimeter/Submillimeter Array (ALMA) as a convenient reference. The magnetic field maps obtained describe the longitudinal magnetic field at the effective formation heights of the relevant wavelengths in the solar chromosphere. The comparison of the deduced and model chromospheric magnetic fields at the spatial resolution of both the model and current observations demonstrates a good correlation, but has a tendency to underestimate the model field. The systematic discrepancy of about 10 percent is probably due to averaging of the restored field over the heights contributing to the radiation, weighted by the strength of the contribution. On the whole, the method of probing the longitudinal component of the magnetic field with free-free emission at mm/submm wavelengths is found to be applicable to measurements of the weak quiet-Sun magnetic fields. However, successful exploitation of this technique requires very accurate measurements of the polarization properties (primary beam and receiver polarization response) of the antennas, which will be the principal factor that determines the level to which chromospheric magnetic fields can be measured. Consequently, high-resolution and high-precision observations of circularly polarized radiation at millimeter wavelengths can be a powerful tool for producing chromospheric longitudinal magnetograms.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا