ترغب بنشر مسار تعليمي؟ اضغط هنا

Direct determination of oxygen abundances in line emitting star-forming galaxies at intermediate redshift

93   0   0.0 ( 0 )
 نشر من قبل Jose Manuel Perez Martinez
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Jose M. Perez




اسأل ChatGPT حول البحث

We present a sample of 22 blue ($(B-V)_{AB}<0.45$), luminous ($M_{B,AB}<-18.9$), metal-poor galaxies in the $0.69<z<0.88$ redshift range, selected from the DEEP2 galaxy redshift survey. Their spectra contain the $[OIII]lambda4363$ auroral line, the $[OII]lambda lambda3726,3729$ doublet and the strong nebular $[OIII]lambda lambda 4959,5007$ emission lines. The ionised gas-phase oxygen abundances of these galaxies lie between $7.62<12+log O/H < 8.19$, i.e. between $1/10 Z_{odot}$ and $1/3 Z_{odot}$. We find that galaxies in our sample have comparable metallicities to other intermediate-redshift samples, but are more metal poor than local systems of similar B-band luminosities and star formation activity. The galaxies here show similar properties to the green peas discovered at $zsimeq 0.2 - 0.3$ though our galaxies tend to be slightly less luminous.


قيم البحث

اقرأ أيضاً

387 - Daniel Schaerer 2014
I provide an overview about star-forming galaxies at high redshift and their physical properties. Starting from the populations of Ly-$alpha$ emitters and Lyman break galaxies, I summarize their common features and distinction. Then I summarize recen t insight onto their physical properties gained from SED models including nebular emission, and various implications from these studies on the properties of star-formation at high redshift. Finally, I present new results and an overview on the dust content and UV attenuation of $z>6$ galaxies obtained from IRAM and ALMA observations.
We present high S/N spectroscopy of 15 emission-line galaxies (ELGs) cataloged in the KPNO International Spectroscopic Survey (KISS), selected for their possession of high equivalent width [O III] lines. The primary goal of this study was to attempt to derive direct-method ($T_e$) abundances for use in constraining the upper-metallicity branch of the $R_{23}$ relation. The spectra cover the full optical region from [O II]{lambda}{lambda}3726,3729 to [S III]{lambda}{lambda}9069,9531 and include the measurement of [O III]{lambda}4363 in 13 objects. From these spectra, we determine abundance ratios of helium, nitrogen, oxygen, neon, sulfur, and argon. We find these galaxies to predominantly possess oxygen abundances in the range of 8.0 $lesssim$ 12+log(O/H) $lesssim$ 8.3. We present a comparison of direct-method abundances with empirical SEL techniques, revealing several discrepancies. We also present a comparison of direct-method oxygen abundance calculations using electron temperatures determined from emission lines of O$^{++}$ and S$^{++}$, finding a small systematic shift to lower $T_e$ (~1184 K) and higher metallicity (~0.14 dex) for sulfur-derived $T_e$ compared to oxygen-derived $T_e$. Finally, we explore in some detail the different spectral activity types of targets in our sample, including regular star-forming galaxies, those with suspected AGN contamination, and a local pair of low-metallicity, high-luminosity compact objects.
We examine the evolutionary status of luminous, star-forming galaxies in intermediate-redshift clusters by considering their star formation rates and the chemical and ionsiation properties of their interstellar emitting gas. Our sample consists of 17 massive, star-forming, mostly disk galaxies with M_{B}<-20, in clusters with redshifts in the range 0.31< z <0.59, with a median of <z>=0.42. We compare these galaxies with the identically selected and analysed intermediate-redshift field sample of Mouhcine et al. (2006), and with local galaxies from the Nearby Field Galaxy Survey of Jansen et al. (2000). From our optical spectra we measure the equivalent widths of OII, Hbeta and OIII emission lines to determine diagnostic line ratios, oxygen abundances, and extinction-corrected star formation rates. The star-forming galaxies in intermediate-redshift clusters display emission line equivalent widths which are, on average, significantly smaller than measured for field galaxies at comparable redshifts. However, a contrasting fraction of our cluster galaxies have equivalent widths similar to the highest observed in the field. This tentatively suggests a bimodality in the star-formation rates per unit luminosity for galaxies in distant clusters. We find no evidence for further bimodalities, or differences between our cluster and field samples, when examining additional diagnostics and the oxygen abundances of our galaxies. This maybe because no such differences exist, perhaps because the cluster galaxies which still display signs of star-formation have recently arrived from the field. In order to examine this topic with more certainty, and to further investigate the way in which any disparity varies as a function of cluster properties, larger spectroscopic samples are needed.
We compare the relations among various integrated characteristics of ~25,000 low-redshift (z<1.0) compact star-forming galaxies (CSFGs) from Data Release 16 (DR16) of the Sloan Digital Sky Survey (SDSS) and of high-redshift (z>1.5) star-forming galax ies (SFGs) with respect to oxygen abundances, stellar masses M*, far-UV absolute magnitudes M(FUV), star-formation rates SFR and specific star-formation rates sSFR, Lyman-continuum photon production efficiencies (xi_ion), UV continuum slopes beta, [OIII]5007/[OII]3727 and [NeIII]3868/[OII]3727 ratios, and emission-line equivalent widths EW([OII]3727), EW([OIII]5007), and EW(Halpha). We find that the relations for low-z CSFGs with high equivalent widths of the Hbeta emission line, EW(Hbeta)>100A, and high-z SFGs are very similar, implying close physical properties in these two categories of galaxies. Thus, CSFGs are likely excellent proxies for the SFGs in the high-z Universe. They also extend to galaxies with lower stellar masses, down to ~10^6 Msun, and to absolute FUV magnitudes as faint as -14 mag. Thanks to their proximity, CSFGs can be studied in much greater detail than distant SFGs. Therefore, the relations between the integrated characteristics of the large sample of CSFGs studied here can prove very useful for our understanding of high-z dwarf galaxies in future observations with large ground-based and space telescopes.
We present the Evolution of molecular Gas in Normal Galaxies (EGNoG) survey, an observational study of molecular gas in 31 star-forming galaxies from z=0.05 to z=0.5, with stellar masses of (4-30)x10^10 M_Sun and star formation rates of 4-100 M_Sun y r^-1. This survey probes a relatively un-observed redshift range in which the molecular gas content of galaxies is expected to have evolved significantly. To trace the molecular gas in the EGNoG galaxies, we observe the CO(1-0) and CO(3-2) rotational lines using the Combined Array for Research in Millimeter-wave Astronomy (CARMA). We detect 24 of 31 galaxies and present resolved maps of 10 galaxies in the lower redshift portion of the survey. We use a bimodal prescription for the CO to molecular gas conversion factor, based on specific star formation rate, and compare the EGNoG galaxies to a large sample of galaxies assembled from the literature. We find an average molecular gas depletion time of 0.76 pm 0.54 Gyr for normal galaxies and 0.06 pm 0.04 Gyr for starburst galaxies. We calculate an average molecular gas fraction of 7-20% at the intermediate redshifts probed by the EGNoG survey. By expressing the molecular gas fraction in terms of the specific star formation rate and molecular gas depletion time (using typical values), we also calculate the expected evolution of the molecular gas fraction with redshift. The predicted behavior agrees well with the significant evolution observed from z~2.5 to today.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا