ﻻ يوجد ملخص باللغة العربية
Derivative structural polytypes coexisting with the rhombohedral A7 structure of elemental bismuth (Bi) have been discovered at ambient condition, based on microstructure analyses of pure Bi samples treated under high pressure and high temperature conditions. Three structures with atomic positions close to those of the A7 structure have been identified through first-principles calculations, showing these polytypes energetically comparable to the A7 structure under ambient condition. Simulated diffraction data are in excellent agreement with the experimental observations. We argue that previously reported variations in physical properties (e.g., density, melting point, electrical conductivity, and magnetism) in bismuth could be due to the formation of these polytypes. The coexistence of metastable derivative structural polytypes may be a widely occurring phenomenon in other elemental materials
The double-resonance (DR) Raman process is a signature of all sp2 carbon material and provide fundamental information of the electronic structure and phonon dispersion in graphene, carbon nanotubes and different graphite-type materials. We have perfo
Magnetic and dielectric properties of the hexagonal triangular lattice antiferromagnet 2H-AgFeO2 have been studied by neutron diffraction, magnetic susceptibility, specific heat, pyroelectric current, and dielectric constant measurements. The ferroel
Multi-layer graphene with rhombohedral stacking is a promising carbon phase possibly displaying correlated states like magnetism or superconductivity due to the occurrence of a flat surface band at the Fermi level. Recently, flakes of thickness up to
The total energy differences between various SiC polytypes (3C, 6H, 4H, 2H, 15R and 9R) were calculated using the full-potential linear muffin-tin orbital method using the Perdew-Wang-(91) generalized gradient approximation to the exchange-correlatio
The mathematical field of topology has become a framework to describe the low-energy electronic structure of crystalline solids. A typical feature of a bulk insulating three-dimensional topological crystal are conducting two-dimensional surface state