ترغب بنشر مسار تعليمي؟ اضغط هنا

Searching for Very High Energy Emission from Pulsars Using the High Altitude Water Cherenkov (HAWC) Observatory

153   0   0.0 ( 0 )
 نشر من قبل Eduardo Moreno-Barbosa
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

There are currently over 160 known gamma-ray pulsars. While most of them are detected only from space, at least two are now seen also from the ground. MAGIC and VERITAS have measured the gamma ray pulsed emission of the Crab pulsar up to hundreds of GeV and more recently MAGIC has reported emission at $sim2$ TeV. Furthermore, in the Southern Hemisphere, H.E.S.S. has detected the Vela pulsar above 30 GeV. In addition, non-pulsed TeV emission coincident with pulsars has been detected by many groups, including the Milagro Collaboration. These GeV-TeV observations open the possibility of searching for very-high-energy (VHE, > 100GeV) pulsations from gamma-rays pulsars in the HAWC field of view.



قيم البحث

اقرأ أيضاً

140 - John Pretz 2015
The High Altitude Water Cherenkov (HAWC) Gamma-Ray Observatory was completed this year at a 4100-meter site on the flank of the Sierra Negra volcano in Mexico. HAWC is a water Cherenkov ground array with the capability to distinguish 100 GeV - 100 Te V gamma rays from the hadronic cosmic-ray background. HAWC is uniquely suited to study extremely high energy cosmic-ray sources, search for regions of extended gamma-ray emission, and to identify transient gamma-ray phenomena. HAWC will play a key role in triggering multi-wavelength and multi-messenger studies of active galaxies, gamma-ray bursts, supernova remnants and pulsar wind nebulae. Observation of TeV photons also provide unique tests for a number of fundamental physics phenomena including dark matter annihilation and primordial black hole evaporation. Operation began mid-2013 with the partially-completed detector. Multi-TeV emission from the Galactic Plane is clearly seen in the first year of operation, confirming a number of known TeV sources, and a number of AGN have been observed. We discuss the science of HAWC, summarize the status of the experiment, and highlight first results from analysis of the data.
The High Altitude Water Cherenkov (HAWC) observatory is a TeV gamma-ray and cosmic-ray detector currently under construction at an altitude of 4100 m close to volcano Sierra Negra in the state of Puebla, Mexico. The HAWC observatory is an extensive a ir-shower array comprised of 300 optically-isolated water Cherenkov detectors (WCDs). Each WCD contains $sim$200,000 liters of filtered water and four upward-facing photomultiplier tubes. In Fall 2014, when the HAWC observatory will reach an area of 22,000 m$^{2}$, the sensitivity will be 15 times higher than its predecessor Milagro. Since September 2012, more than 30 WCDs have been instrumented and taking data. This first commissioning phase has been crucial for the verification of the data acquisition and event reconstruction algorithms. Moreover, with the increasing number of instrumented WCDs, it is important to verify the data taken with different configuration geometries. In this work we present a comparison between Monte Carlo simulation and data recorded by the experiment during 24 hours of live time between 14 and 15 April of 2013 when 29 WCDs were active.
The vast majority of pulsars detected by the Fermi Large Area Telescope (LAT) display exponentially cutoff spectra with cutoffs falling in a narrow band around a few GeV. Early spectral modelling predicted spectral cutoffs at energies of up to 100 Ge V, assuming curvature radiation. It was therefore not expected that pulsars would be visible in the very-high energy (VHE) regime (>100 GeV). The VERITAS announcement of the detection of pulsed emission from the Crab pulsar at energies up to 400 GeV (and now up to 1.5 TeV as detected by MAGIC) therefore raised important questions about our understanding of the electrodynamics and local environment of pulsars. H.E.S.S. has now detected pulsed emission from the Vela pulsar down to tens of GeV, making this the second pulsar detected by a ground-based Cherenkov telescope. Deep upper limits have also been obtained by VERITAS and MAGIC for the Geminga pulsar. We will review the latest developments in VHE pulsar science, including an overview of the latest observations, refinements, and extensions to radiation models and magnetic field structures, and the implementation of new radiation mechanisms. This will assist us in understanding the VHE emission detected from the Crab pulsar, and predicting the level of VHE emission expected from other pulsars, which is very important for the upcoming CTA.
The Andromeda Galaxy (M31) is a nearby ($sim$780 kpc) galaxy similar to our own Milky Way. Observational evidence suggests that it resides in a large halo of dark matter (DM), making it a good target for DM searches. We present a search for gamma ray s from M31 using 1017 days of data from the High Altitude Water Cherenkov (HAWC) Observatory. With its wide field of view and constant monitoring, HAWC is well-suited to search for DM in extended targets like M31. No DM annihilation or decay signal was detected for DM masses from 1 to 100 TeV in the $bbar{b}$, $tbar{t}$, $tau^{+}tau^{-}$, $mu^{+}mu^{-}$, and $W^{+}W^{-}$ channels. Therefore we present limits on those processes. Our limits nicely complement the existing body of DM limits from other targets and instruments. Specifically the DM decay limits from our benchmark model are the most constraining for DM masses from 25 TeV to 100 TeV in the $bbar{b}, tbar{t}$ and $mu^{+}mu{-}$ channels. In addition to DM-specific limits, we also calculate general gamma-ray flux limits for M31 in 5 energy bins from 1 TeV to 100 TeV.
226 - D. Allard , C. Alvarez , H. Asorey 2009
Water Cherenkov Detectors (WCD) are efficient detectors for detecting GRBs in the 10 GeV - 1 TeV energy range using the single particle technique, given their sensitivity to low energy secondary photons produced by high energy photons when cascading in the atmosphere. The Large Aperture GRB Observatory (LAGO) operates arrays of WCD in high altitude sites (above 4500 m a.s.l.) in Bolivia, Mexico and Venezuela, with planned extension to Peru. Details on the operation and stability of these WCD in remote sites with high background rates of particles will be detailed, and compared to simulations. Specific issues due to operation at high altitude, atmospheric effects and solar activity, as well as possible hardware enhancements will also be presented.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا