ﻻ يوجد ملخص باللغة العربية
We use photometric and spectroscopic observations of the detached eclipsing binaries V40 and V41 in the globular cluster NGC 6362 to derive masses, radii, and luminosities of the component stars. The orbital periods of these systems are 5.30 and 17.89 d, respectively. The measured masses of the primary and secondary components ($M_p$, $M_s$) are (0.8337$pm$0.0063, 0.7947$pm$0.0048) M$_odot$ for V40 and (0.8215$pm$0.0058, 0.7280$pm$0.0047) M$_odot$ for V41. The measured radii ($R_p$, $R_s$) are (1.3253$pm$0.0075, 0.997$pm$0.013) R$_odot$ for V40 and (1.0739$pm$0.0048, 0.7307$pm$0.0046) R$_odot$ for V41. Based on the derived luminosities, we find that the distance modulus of the cluster is 14.74$pm$0.04 mag -- in good agreement with 14.72 mag obtained from CMD fitting. We compare the absolute parameters of component stars with theoretical isochrones in mass-radius and mass-luminosity diagrams. For assumed abundances [Fe/H] = -1.07, [$alpha$/Fe] = 0.4, and Y = 0.25 we find the most probable age of V40 to be 11.7$pm$0.2 Gyr, compatible with the age of the cluster derived from CMD fitting (12.5$pm$0.5 Gyr). V41 seems to be markedly younger than V40. If independently confirmed, this result will suggest that V41 belongs to the younger of the two stellar populations recently discovered in NGC 6362. The orbits of both systems are eccentric. Given the orbital period and age of V40, its orbit should have been tidally circularized some $sim$7 Gyr ago. The observed eccentricity is most likely the result of a relatively recent close stellar encounter.
We use photometric and spectroscopic observations of the eclipsing binaries V65, V66 and V69 in the field of the globular cluster M4 to derive masses, radii, and luminosities of their components. The orbital periods of these systems are 2.29, 8.11 an
The field of the globular cluster NGC 6362 was monitored between 1995 and 2009 in a search for variable stars. BV light curves were obtained for 69 periodic variables including 34 known RR Lyr stars, 10 known objects of other types and 25 newly detec
We use photometric and spectroscopic observations of the eclipsing binary E32 in the globular cluster 47 Tuc to derive the masses, radii, and luminosities of the component stars. The system has an orbital period of 40.9 d, a markedly eccentric orbit
We present the first detailed analysis of the detached eclipsing binary V15 in the super-metal rich open cluster NGC 6253. We obtain the following absolute parameters: M_p=1.303+-0.006 Msun, R_p=1.71+-0.03 Rsun, L_p=2.98+-0.10 Lsun for the primary, a
We use photometric and spectroscopic observations of the eclipsing binary V69-47 Tuc to derive the masses, radii, and luminosities of the component stars. Based on measured systemic velocity, distance, and proper motion, the system is a member of the