ﻻ يوجد ملخص باللغة العربية
We present spectral data cubes of the [CI] 809GHz, 12CO 115GHz, 13CO 110GHz and HI 1.4GHz line emission from an 1 square degree region along the l = 328{deg} (G328) sightline in the Galactic Plane. Emission arises principally from gas in three spiral arm crossings along the sight line. The distribution of the emission in the CO and [CI] lines is found to be similar, with the [CI] slightly more extended, and both are enveloped in extensive HI. Spectral line ratios per voxel in the data cubes are found to be similar across the entire extent of the Galaxy. However, towards the edges of the molecular clouds the [CI]/13CO and 12CO/13CO line ratios rise by ~50%, and the [CI]/HI ratio falls by ~10$%. We attribute this to these sightlines passing predominantly through the surfaces of photodissociation regions (PDRs), where the carbon is found mainly as C or C+, while the H2 is mostly molecular, and the proportion of atomic gas also increases. We undertake modelling of the PDR emission from low density molecular clouds excited by average interstellar radiation fields and cosmic-ray ionization to quantify this comparison, finding that depletion of sulfur and reduced PAH abundance is needed to match line fluxes and ratios. Roughly one-third of the molecular gas along the sightline is found to be associated with this surface region, where the carbon is largely not to be found in CO. ~10% of the atomic hydrogen along the sightline is cold gas within PDRs.
We present spectral line images of [CI] 809 GHz, CO J=1-0 115 GHz and HI 1.4 GHz line emission, and calculate the corresponding C, CO and H column densities, for a sinuous, quiescent Giant Molecular Cloud about 5 kpc distant along the l=328{deg} sigh
We report the first characterization of an extended outflow of high ionized gas in the Circinus Galaxy by means of the coronal line [FeVII] $lambda$6087 AA. This emission is located within the ionization cone already detected in the [OIII] $lambda$50
The mass of molecular gas in an interstellar cloud is often measured using line emission from low rotational levels of CO, which are sensitive to the CO mass, and then scaling to the assumed molecular hydrogen H_2 mass. However, a significant H_2 mas
We present a spectroscopic study of metal-deficient dwarf galaxy candidates, selected from the SDSS DR12. The oxygen abundances were derived using the direct method in galaxies with the electron temperature-sensitive emission line [OIII]4363A measure
We report the results from a new, highly sensitive ($Delta T_{mb} sim 3 $mK) survey for thermal OH emission at 1665 and 1667 MHz over a dense, 9 x 9-pixel grid covering a $1deg$ x $1deg$ patch of sky in the direction of $l = 105deg, b = +2.50deg$ tow