ترغب بنشر مسار تعليمي؟ اضغط هنا

Independent Sets, Matchings, and Occupancy Fractions

101   0   0.0 ( 0 )
 نشر من قبل Matthew Jenssen
 تاريخ النشر 2015
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We prove tight upper bounds on the logarithmic derivative of the independence and matching polynomials of d-regular graphs. For independent sets, this theorem is a strengthening of the results of Kahn, Galvin and Tetali, and Zhao showing that a union of copies of $K_{d,d}$ maximizes the number of independent sets and the independence polynomial of a d-regular graph. For matchings, this shows that the matching polynomial and the total number of matchings of a d-regular graph are maximized by a union of copies of $K_{d,d}$. Using this we prove the asymptotic upper matching conjecture of Friedland, Krop, Lundow, and Markstrom. In probabilistic language, our main theorems state that for all d-regular graphs and all $lambda$, the occupancy fraction of the hard-core model and the edge occupancy fraction of the monomer-dimer model with fugacity $lambda$ are maximized by $K_{d,d}$. Our method involves constrained optimization problems over distributions of random variables and applies to all d-regular graphs directly, without a reduction to the bipartite case.



قيم البحث

اقرأ أيضاً

We determine the maximum number of maximal independent sets of arbitrary graphs in terms of their covering numbers and we completely characterize the extremal graphs. As an application, we give a similar result for Konig-Egervary graphs in terms of their matching numbers.
245 - Gabriel Nivasch , Eran Omri 2015
Grinblat (2002) asks the following question in the context of algebras of sets: What is the smallest number $mathfrak v = mathfrak v(n)$ such that, if $A_1, ldots, A_n$ are $n$ equivalence relations on a common finite ground set $X$, such that for ea ch $i$ there are at least $mathfrak v$ elements of $X$ that belong to $A_i$-equivalence classes of size larger than $1$, then $X$ has a rainbow matching---a set of $2n$ distinct elements $a_1, b_1, ldots, a_n, b_n$, such that $a_i$ is $A_i$-equivalent to $b_i$ for each $i$? Grinblat has shown that $mathfrak v(n) le 10n/3 + O(sqrt{n})$. He asks whether $mathfrak v(n) = 3n-2$ for all $nge 4$. In this paper we improve the upper bound (for all large enough $n$) to $mathfrak v(n) le 16n/5 + O(1)$.
There are distributed graph algorithms for finding maximal matchings and maximal independent sets in $O(Delta + log^* n)$ communication rounds; here $n$ is the number of nodes and $Delta$ is the maximum degree. The lower bound by Linial (1987, 1992) shows that the dependency on $n$ is optimal: these problems cannot be solved in $o(log^* n)$ rounds even if $Delta = 2$. However, the dependency on $Delta$ is a long-standing open question, and there is currently an exponential gap between the upper and lower bounds. We prove that the upper bounds are tight. We show that maximal matchings and maximal independent sets cannot be found in $o(Delta + log log n / log log log n)$ rounds with any randomized algorithm in the LOCAL model of distributed computing. As a corollary, it follows that there is no deterministic algorithm for maximal matchings or maximal independent sets that runs in $o(Delta + log n / log log n)$ rounds; this is an improvement over prior lower bounds also as a function of $n$.
141 - Adam Blumenthal 2019
In this paper, we study independent domination in directed graphs, which was recently introduced by Cary, Cary, and Prabhu. We provide a short, algorithmic proof that all directed acyclic graphs contain an independent dominating set. Using linear alg ebraic tools, we prove that any strongly connected graph with even period has at least two independent dominating sets, generalizing several of the results of Cary, Cary, and Prabhu. We prove that determining the period of the graph is not sufficient to determine the existence of an independent dominating set by constructing a few examples of infinite families of graphs. We show that the direct analogue of Vizings Conjecture does not hold for independent domination number in directed graphs by providing two infinite families of graphs. We initialize the study of time complexity for independent domination in directed graphs, proving that the existence of an independent dominating set in directed acyclic graphs and strongly connected graphs with even period are in the time complexity class $P$. We also provide an algorithm for determining existence of an independent dominating set for digraphs with period greater than $1$.
The notion of a Riordan graph was introduced recently, and it is a far-reaching generalization of the well-known Pascal graphs and Toeplitz graphs. However, apart from a certain subclass of Toeplitz graphs, nothing was known on independent sets in Ri ordan graphs. In this paper, we give exact enumeration and lower and upper bounds for the number of independent sets for various classes of Riordan graphs. Remarkably, we offer a variety of methods to solve the problems that range from the structural decomposition theorem to methods in combinatorics on words. Some of our results are valid for any graph.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا