ترغب بنشر مسار تعليمي؟ اضغط هنا

The SDSS-IV extended Baryonic Oscillation Spectroscopic Survey: Luminous Red Galaxy Target Selection

392   0   0.0 ( 0 )
 نشر من قبل Abhishek Prakash
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We describe the algorithm used to select the Luminous Red Galaxy (LRG) sample for the extended Baryon Oscillation Spectroscopic Survey (eBOSS) of the Sloan Digital Sky Survey IV (SDSS-IV) using photometric data from both the SDSS and the Wide-Field Infrared Survey Explorer (WISE). LRG targets are required to meet a set of color selection criteria and have z-band and i-band MODEL magnitudes z < 19.95 and 19.9 < i < 21.8, respectively. Our algorithm selects roughly 50 LRG targets per square degree, the great majority of which lie in the redshift range 0.6 < z < 1.0 (median redshift 0.71). We demonstrate that our methods are highly effective at eliminating stellar contamination and lower-redshift galaxies. We perform a number of tests using spectroscopic data from SDSS-III/BOSS to determine the redshift reliability of our target selection and its ability to meet the science requirements of eBOSS. The SDSS spectra are of high enough signal-to-noise ratio that at least 89% of the target sample yields secure redshift measurements. We also present tests of the uniformity and homogeneity of the sample, demonstrating that it should be clean enough for studies of the large-scale structure of the universe at higher redshifts than SDSS-III/BOSS LRGs reached.

قيم البحث

اقرأ أيضاً

96 - Adam D. Myers 2015
As part of the Sloan Digital Sky Survey IV the extended Baryon Oscillation Spectroscopic Survey (eBOSS) will improve measurements of the cosmological distance scale by applying the Baryon Acoustic Oscillation (BAO) method to quasar samples. eBOSS wil l adopt two approaches to target quasars over 7500 sq. deg. First, a CORE quasar sample will combine optical selection in ugriz using a likelihood-based routine called XDQSOz, with a mid-IR-optical color-cut. eBOSS CORE selection (to g < 22 OR r < 22) should return ~ 70 quasars per sq. deg. at redshifts 0.9 < z < 2.2 and ~7 z > 2.1 quasars per sq. deg. Second, a selection based on variability in multi-epoch imaging from the Palomar Transient Factory should recover an additional ~3-4 z > 2.1 quasars per sq. deg. to g < 22.5. A linear model of how imaging systematics affect target density recovers the angular distribution of eBOSS CORE quasars over 96.7% (76.7%) of the SDSS North (South) Galactic Cap area. The eBOSS CORE quasar sample should thus be sufficiently dense and homogeneous over 0.9 < z < 2.2 to yield the first few-percent-level BAO constraint near z~1.5. eBOSS quasars at z > 2.1 will be used to improve BAO measurements in the Lyman-alpha Forest. Beyond its key cosmological goals, eBOSS should be the next-generation quasar survey, comprising > 500,000 new quasars and > 500,000 uniformly selected spectroscopically confirmed 0.9 < z < 2.2 quasars. At the conclusion of eBOSS, the SDSS will have provided unique spectra of over 800,000 quasars.
We describe the algorithm used to select the Emission Line Galaxy (ELG) sample at $z sim 0.85$ for the extended Baryon Oscillation Spectroscopic Survey of the Sloan Digital Sky Survey IV, using photometric data from the DECam Legacy Survey. Our selec tion is based on a selection box in the $g-r$ vs. $r-z$ colour-colour space and a cut on the $g$-band magnitude, to favour galaxies in the desired redshift range with strong [OII] emission. It provides a target density of 200 deg$^{-2}$ on the North Galactic Cap (NGC) and of 240 deg$^{-2}$ on the South Galactic Cap (SGC), where we use a larger selection box because of deeper imaging. We demonstrate that this selection passes the eBOSS requirements in terms of homogeneity. About 50,000 ELGs have been observed since the observations have started in 2016, September. These roughly match the expected redshift distribution, though the measured efficiency is slightly lower than expected. The efficiency can be increased by enlarging the redshift range and with incoming pipeline improvement. The cosmological forecast based on these first data predict $sigma_{D_V}/D_V = 0.023$, in agreement with previous forecasts. Lastly, we present the stellar population properties of the ELG SGC sample. Once observations are completed, this sample will be suited to provide a cosmological analysis at $z sim 0.85$, and will pave the way for the next decade of massive spectroscopic cosmological surveys, which heavily rely on ELGs. The target catalogue over the SGC will be released along with DR14.
The extended Baryon Oscillation Spectroscopic Survey (eBOSS) Data Release 14 sample includes 80,118 Luminous Red Galaxies. By combining these galaxies with the high-redshift tail of the BOSS galaxy sample, we form a sample of LRGs at an effective red shift $z=0.72$, covering an effective volume of 0.9~Gpc$^3$. We introduce new techniques to account for spurious fluctuations caused by targeting and by redshift failures which were validated on a set of mock catalogs. This analysis is sufficient to provide a $2.6$% measurement of spherically averaged BAO, $D_V(z=0.72) = 2353^{+63}_{-61} (r_d/r_{d,rm{fid}}) h^{-1}$Mpc, at 2.8$sigma$ of significance. Together with the recent quasar-based BAO measurement at $z=1.5$, and forthcoming Emission Line Galaxy-based measurements, this measurement demonstrates that eBOSS is fulfilling its remit of extending the range of redshifts covered by such measurements, laying the ground work for forthcoming surveys such as the Dark Energy Spectroscopic Survey and Euclid.
The Baryon Oscillation Spectroscopic Survey (BOSS), part of the Sloan Digital Sky Survey (SDSS) III project, has provided the largest survey of galaxy redshifts available to date, in terms of both the number of galaxy redshifts measured by a single s urvey, and the effective cosmological volume covered. Key to analysing the clustering of these data to provide cosmological measurements is understanding the detailed properties of this sample. Potential issues include variations in the target catalogue caused by changes either in the targeting algorithm or properties of the data used, the pattern of spectroscopic observations, the spatial distribution of targets for which redshifts were not obtained, and variations in the target sky density due to observational systematics. We document here the target selection algorithms used to create the galaxy samples that comprise BOSS. We also present the algorithms used to create large scale structure catalogues for the final Data Release (DR12) samples and the associated random catalogues that quantify the survey mask. The algorithms are an evolution of those used by the BOSS team to construct catalogues from earlier data, and have been designed to accurately quantify the galaxy sample. The code used, designated MKSAMPLE, is released with this paper.
We present the characteristics of the Damped Lyman-$alpha$ (DLA) systems found in the data release DR16 of the extended Baryon Oscillation Spectroscopic Survey (eBOSS) of the Sloan Digital Sky Survey (SDSS). DLAs were identified using the convolution al neural network (CNN) of~cite{Parks2018}. A total of 117,458 absorber candidates were found with $2 leq zdla leq 5.5$ and $19.7 leq lognhi leq 22$, including 57,136 DLA candidates with $lognhi geq 20.3$. Mock quasar spectra were used to estimate DLA detection efficiency and the purity of the resulting catalog. Restricting the quasar sample to bright forests, i.e. those with mean forest fluxes $meanflux>2timesfluxunit$, the completeness and purity are greater than 90% for DLAs with column densities in the range $20.1leq lognhi leq 22$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا