ترغب بنشر مسار تعليمي؟ اضغط هنا

A New Method for Constraining Molecular Cloud Thickness: A study of Taurus, Perseus and Ophiuchus

103   0   0.0 ( 0 )
 نشر من قبل Lei Qian
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The core velocity dispersion (CVD) is a potentially useful tool for studying the turbulent velocity field of molecular clouds. CVD is based on centroid velocities of dense gas clumps, thus is less prone to density fluctuation and reflects more directly the cloud velocity field. Prior work demonstrated that the Taurus molecular cloud CVD resembles the well-known Larsons linewidth-size relation of molecular clouds. In this work, we studied the dependence of the CVD on the line-of-sight thickness of molecular clouds, a quantity which cannot be measured by direct means. We produced a simple statistical model of cores within clouds and analyzed the CVD of a variety of hydrodynamical simulations. We show that the relation between the CVD and the 2D projected separation of cores ($L_{2D}$) is sensitive to the cloud thickness. When the cloud is thin, the index of CVD-$L_{2D}$ relation ($gamma$ in the relation CVD$sim L_{2D}^{gamma}$) reflects the underlying energy spectrum ($E(k)sim k^{-beta}$) in that $gammasim(beta-1)/2$. The CVD-$L_{2D}$ relation becomes flatter ($gammato 0$) for thicker clouds. We used this result to constrain the thicknesses of Taurus, Perseus, and Ophiuchus. We conclude that Taurus has a ratio of cloud depth to cloud length smaller than about 1/10-1/8, i.e. it is a sheet. A simple geometric model fit to the linewidth-size relation indicates that the Taurus cloud has a $sim 0.7$ pc line-of-sight dimension. In contrast, Perseus and Ophiuchus are thicker and have ratios of cloud depth to cloud length larger than about 1/10-1/8.

قيم البحث

اقرأ أيضاً

We introduce the histogram of oriented gradients (HOG), a tool developed for machine vision that we propose as a new metric for the systematic characterization of observations of atomic and molecular gas and the study of molecular cloud formation mod els. In essence, the HOG technique takes as input extended spectral-line observations from two tracers and provides an estimate of their spatial correlation across velocity channels. We characterize HOG using synthetic observations of HI and $^{13}$CO(J=1-0) emission from numerical simulations of MHD turbulence leading to the formation of molecular gas after the collision of two atomic clouds. We find a significant spatial correlation between the two tracers in velocity channels where $v_{HI}approx v_{^{13}CO}$, independent of the orientation of the collision with respect to the line of sight. We use HOG to investigate the spatial correlation of the HI, from the THOR survey, and the $^{13}$CO(J=1-0) emission, from the GRS, toward the portion of the Galactic plane 33.75$lt llt$35.25$^{o}$ and $|b|lt$1.25$^{o}$. We find a significant spatial correlation between the tracers in extended portions of the studied region. Although some of the regions with high spatial correlation are associated with HI self-absorption features, suggesting that it is produced by the cold atomic gas, the correlation is not exclusive to this kind of region. The HOG results also indicate significant differences between individual regions: some show spatial correlation in channels around $v_{HI}approx v_{^{13}CO}$ while others present this correlation in velocity channels separated by a few km/s. We associate these velocity offsets to the effect of feedback and to the presence of physical conditions that are not included in the atomic-cloud-collision simulations, such as more general magnetic field configurations, shear, and global gas infall.
CO, $^{13}$CO and C$^{18}$O ${it J}$ = 3--2 observations are presented of the Ophiuchus molecular cloud. The $^{13}$CO and C$^{18}$O emission is dominated by the Oph A clump, and the Oph B1, B2, C, E, F and J regions. The optically thin(ner) C$^{18}$ O line is used as a column density tracer, from which the gravitational binding energy is estimated to be $4.5 times 10^{39}$ J (2282 $M_odot$ km$^2$ s$^{-2}$). The turbulent kinetic energy is $6.3 times 10^{38}$ J (320 $M_odot$ km$^2$ s$^{-2}$), or 7 times less than this, and therefore the Oph cloud as a whole is gravitationally bound. Thirty protostars were searched for high velocity gas, with eight showing outflows, and twenty more having evidence of high velocity gas along their lines-of-sight. The total outflow kinetic energy is $1.3 times 10^{38}$ J (67 $M_odot$ km$^2$ s$^{-2}$), corresponding to 21$%$ of the clouds turbulent kinetic energy. Although turbulent injection by outflows is significant, but does ${it not}$ appear to be the dominant source of turbulence in the cloud. 105 dense molecular clumplets were identified, which had radii $sim$ 0.01--0.05 pc, virial masses $sim$ 0.1--12 $M_odot$, luminosities $sim$ 0.001--0.1 K~km s$^{-1}$ pc$^{-2}$, and excitation temperatures $sim$ 10--50K. These are consistent with the standard GMC based size-line width relationships, showing that the scaling laws extend down to size scales of hundredths of a parsec, and to sub solar-mass condensations. There is however no compelling evidence that the majority of clumplets are undergoing free-fall collapse, nor that they are pressure confined.
Optical stellar polarimetry in the Perseus molecular cloud direction is known to show a fully mixed bi-modal distribution of position angles across the cloud (Goodman et al. 1990). We study the Gaia trigonometric distances to each of these stars and reveal that the two components in position angles trace two different dust clouds along the line of sight. One component, which shows a polarization angle of -37.6 deg +/- 35.2 deg and a higher polarization fraction of 2.0 +/- 1.7%, primarily traces the Perseus molecular cloud at a distance of 300 pc. The other component, which shows a polarization angle of +66.8 deg +/- 19.1 deg and a lower polarization fraction of 0.8 +/- 0.6%, traces a foreground cloud at a distance of 150 pc. The foreground cloud is faint, with a maximum visual extinction of < 1 mag. We identify that foreground cloud as the outer edge of the Taurus molecular cloud. Between the Perseus and Taurus molecular clouds, we identify a lower-density ellipsoidal dust cavity with a size of 100 -- 160 pc. This dust cavity locates at l = 170 deg, b = -20 deg, and d = 240 pc, which corresponds to an HI shell generally associated with the Per OB2 association. The two-component polarization signature observed toward the Perseus molecular cloud can therefore be explained by a combination of the plane-of-sky orientations of the magnetic field both at the front and at the back of this dust cavity.
102 - Katelyn N. Allers 2020
We present the design and implementation of a medium-band near-IR filter tailored for detecting low-mass stars and brown dwarfs from the summit of Maunakea. The W-band filter is centered at 1.45 micron with a bandpass width of 6%, designed to measure the depth of the H2O water absorption prominent in objects with spectral types of M6 and later. When combined with standard J- and H-band photometry, the W-band filter is designed to determine spectral types to $approx$1.4 subtypes for late-M and L dwarfs, largely independent of surface gravity and reddening. This filters primary application is completing the census of young substellar objects in star-forming regions, using W-band selection to greatly reduce contamination by reddened background stars that impede broad-band imaging surveys. We deployed the filter on the UH 88-inch telescope to survey $approx$3 sq. deg. of the NGC 1333, IC 348, and rho Ophiuchus star-forming regions. Our spectroscopic followup of W-band selected candidates resulted in the confirmation of 48 ultracool dwarfs with a success rate of 89%, demonstrating the efficacy of this new filter and selection method.
136 - Dan P. Clemens 2013
Few normal galaxies have been probed using near-infrared polarimetry, even though it reveals magnetic fields in the cool interstellar medium better than either optical or radio polarimetry. Deep H-band (1.6um) linear imaging polarimetry toward Taurus serendipitously included the galaxy 2MASX J04412715+2433110 with adequate sensitivity and resolution to map polarization across nearly its full extent. The observations revealed the galaxy to be a steeply inclined (~75 deg) disk type with a diameter, encompassing 90% of the Petrosian flux, of 4.2 kpc at a distance of 53 Mpc. Because the sight line passes through the Taurus Molecular Cloud complex, the foreground polarization needed to be measured and removed. The foreground extinction Av of 2.00+/-0.10 mag and reddening E(H-K) of 0.125 +/- 0.009 mag were also assessed and removed, based on analysis of 2MASS, UKIDSS, Spitzer, and WISE photometry using the NICE, NICER, and RJCE methods. Corrected for the polarized foreground, the galaxy polarization values range from zero to 3%. The polarizations are dominated by a disk-parallel magnetic field geometry, especially to the northeast, while either a vertical field or single scattering of bulge light produces disk-normal polarizations to the southwest. The multi-kpc coherence of the magnetic field revealed by the infrared polarimetry is in close agreement with short wavelength radio synchrotron observations of edge-on galaxies, indicating that both cool and warm interstellar media of disk galaxies may be threaded by common magnetic fields.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا