ترغب بنشر مسار تعليمي؟ اضغط هنا

Spectroscopic Study of the Envelope of the Hybrid Nova V458 Vul and Surrounding Nebula

72   0   0.0 ( 0 )
 نشر من قبل Taya Tarasova
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English
 تأليف T. N. Tarasova




اسأل ChatGPT حول البحث

Spectroscopic observations of the hybrid V458 Vul obtained between days 9 and 778 after the brightness maximum are analyzed. Short-period, daily profile variations of forbidden [FeVII] iron lines were detected in the nebular phase, as well as a long-period (about 60-day) cyclic variation that was correlated with the photometric and X-ray cycles. The abundances of helium, neon, and iron in the novas envelope have been estimated. The helium, neon, and iron abundances exceed the solar values by factors of 4.4, 4.8, and 3.7. The envelope mass is 1.4$times$ 10$^{-5}$M$_{odot}$. The electron temperatures and number densities have been calculated for the Northwestern and Southeastern knots of the planetary nebula. The temperature derived for the Northwestern knot is Te = 10 000 K and the electron number density, n$_{e}$ = 600 cm $^{-3}$ for the Southeastern knot, Te = 13 000 K and n$_{e}$ = 750 cm$^{-3}$.



قيم البحث

اقرأ أيضاً

We describe the highly variable X-ray and UV emission of V458 Vul (Nova Vul 2007), observed by Swift between 1 and 422 days after outburst. Initially bright only in the UV, V458 Vul became a variable hard X-ray source due to optically thin thermal em ission at kT=0.64 keV with an X-ray band unabsorbed luminosity of 2.3x10^{34} erg s^{-1} during days 71-140. The X-ray spectrum at this time requires a low Fe abundance (0.2^{+0.3}_{-0.1} solar), consistent with a Suzaku measurement around the same time. On day 315 we find a new X-ray spectral component which can be described by a blackbody with temperature of kT=23^{+9}_{-5} eV, while the previous hard X-ray component has declined by a factor of 3.8. The spectrum of this soft X-ray component resembles those typically seen in the class of supersoft sources (SSS) which suggests that the nova ejecta were starting to clear and/or that the WD photosphere is shrinking to the point at which its thermal emission reaches into the X-ray band. We find a high degree of variability in the soft component with a flare rising by an order of magnitude in count rate in 0.2 days. In the following observations on days 342.4-383.6, the soft component was not seen, only to emerge again on day 397. The hard component continued to evolve, and we found an anticorrelation between the hard X-ray emission and the UV emission, yielding a Spearman rank probability of 97%. After day 397, the hard component was still present, was variable, and continued to fade at an extremely slow rate but could not be analysed owing to pile up contamination from the bright SSS component.
130 - P. Rodriguez-Gil 2010
We present time-resolved optical spectroscopy of V458 Vulpeculae (Nova Vul 2007 No. 1) spread over a period of 15 months starting 301 days after its discovery. Our data reveal radial velocity variations in the HeII {lambda}5412 and HeII {lambda}4686 emission lines. A period analysis of the radial velocity curves resulted in a period of 98.09647 pm 0.00025 min (0.06812255 pm 0.00000017 d) which we identify with the orbital period of the binary system. V458 Vul is therefore the planetary nebula central binary star with the shortest period known. We explore the possibility of the system being composed of a relatively massive white dwarf (M1 gsim 1.0 Msun) accreting matter from a post-asymptotic giant branch star which produced the planetary nebula observed. In this scenario, the central binary system therefore underwent two common-envelope episodes. A combination of previous photoionisation modelling of the nebular spectra, post-asymptotic giant branch evolutionary tracks and the orbital period favour a mass of M2 sim 0.6 Msun for the donor star. Therefore, the total mass of the system may exceed the Chandrasekhar mass, which makes V458 Vul a Type Ia supernova progenitor candidate.
108 - Tomasz Kaminski 2015
CK Vulpeculae was observed in outburst in 1670-16721, but no counterpart was seen until 1982, when a bipolar nebula was found at its location. Historically, CK Vul has been considered to be a nova (Nova Vul 1670), but a similarity to red transients, which are more luminous than classical nova and thought to be the result of stellar collisions, has re-opened the question of CK Vuls status. Red transients cool to resemble late M-type stars, surrounded by circumstellar material rich in molecules and dust. No stellar source has been seen in CK Vul, though a radio continuum source was identified at the expansion centre of the nebula. Here we report CK Vul is surrounded by chemically rich molecular gas with peculiar isotopic ratios, as well as dust. The chemical composition cannot be reconciled with a nova or indeed any other known explosion. In addition, the mass of the surrounding gas is too high for a nova, though the conversion from observations of CO to a total mass is uncertain. We conclude that CK Vul is best explained as the remnant of a merger of two stars.
We present photometric and spectral observation for four novae: V2362 Cyg, V2467 Cyg, V458 Vul, V2491 Cyg. All objects belongs to the fast novae class. For these stars we observed different departures from a typical behavior in the light curve and spectrum.
Portions of the Kepler K2 Short Cadence light curve of the dwarf nova (DN) TW Vir at quiescence are investigated using light curve modeling. The light curve was separated into 24 sections, each with a data length of $sim,$0.93,d, comprising 4 section s before and 20 after a superoutburst (SO). Due to the morphological differences, the quiescent orbital modulation is classified into three types. Using a fixed disk radius and the two component stellar parameters, all 24 synthetic disk models from the sections show a consistent configuration, consisting of a disk and two hotspots: one at the vertical side of the edge of the disk and the other one on the surface of the disk. Before the SO, the disk and a ringlike surface-hotspot are suddenly enhanced, triggering a precursor and then SO. At the end of the quiescent period following the SO and before the first normal outburst, the edge-hotspot becomes hotter, while the surface-hotspot switches into a ``coolspot with a coverage of nearly one-half of the disk surface. During quiescence, the surface-hotspot is always located at the outer part of the disk with a constant radial width. A flat radial temperature distribution of the disk is found and appears flatter when approaching the outburst. Like many U,Gem-type DN with orbital periods of 3-5,hr, the mass transfer rate is significantly lower than the predictions of the standard/revised models of CV evolution.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا