ﻻ يوجد ملخص باللغة العربية
Conformational properties of regular dendrimers and more general hyperbranched polymer stars with Gaussian statistics for the spacer chains between branching points are revisited numerically. We investigate the scaling for asymptotically long chains especially for fractal dimensions $d_f = 3$ (marginally compact) and $d_f = 2.5$ (diffusion limited aggregation). Power-law stars obtained by imposing the number of additional arms per generation are compared to truly self-similar stars. We discuss effects of weak excluded volume interactions and sketch the regime where the Gaussian approximation should hold in dense solutions and melts for sufficiently large spacer chains.
We study the relaxation dynamics of a coarse-grained polymer chain at different degrees of stretching by both analytical means and numerical simulations. The macromolecule is modelled as a string of beads, connected by anharmonic springs, subject to
Polymeric single-chain nanoparticles (SCNPs) are soft nano-objects synthesized by purely intramolecular cross-linking of single polymer chains. By means of computer simulations, we investigate the conformational properties of SCNPs as a function of t
We extend the Rouse model of polymer dynamics to situations of non-stationary chain growth. For a dragged polymer chain of length $N(t) = t^alpha$, we find two transitions in conformational dynamics. At $alpha= 1/2$, the propagation of tension and th
The thermally assisted detachment of a self-avoiding polymer chain from an adhesive surface by an external force applied to one of the chain ends is investigated. We perform our study in the fixed height statistical ensemble where one measures the fl
Nonlinear extensional flows are common in polymer processing but remain challenging theoretically because dramatic stretching of chains deforms the entanglement network far from equilibrium. Here, we present coarse-grained simulations of extensional