ﻻ يوجد ملخص باللغة العربية
A hole is a chordless cycle with at least four vertices. A pan is a graph which consists of a hole and a single vertex with precisely one neighbor on the hole. An even hole is a hole with an even number of vertices. We prove that a (pan, even hole)-free graph can be decomposed by clique cutsets into essentially unit circular-arc graphs. This structure theorem is the basis of our $O(nm)$-time certifying algorithm for recognizing (pan, even hole)-free graphs and for our $O(n^{2.5}+nm)$-time algorithm to optimally color them. Using this structure theorem, we show that the tree-width of a (pan, even hole)-free graph is at most 1.5 times the clique number minus 1, and thus the chromatic number is at most 1.5 times the clique number.
The class of all even-hole-free graphs has unbounded tree-width, as it contains all complete graphs. Recently, a class of (even-hole, $K_4$)-free graphs was constructed, that still has unbounded tree-width [Sintiari and Trotignon, 2019]. The class ha
A graph is even-hole-free if it has no induced even cycles of length 4 or more. A cap is a cycle of length at least 5 with exactly one chord and that chord creates a triangle with the cycle. In this paper, we consider (cap, even hole)-free graphs, an
A vertex of a graph is bisimplicial if the set of its neighbors is the union of two cliques; a graph is quasi-line if every vertex is bisimplicial. A recent result of Chudnovsky and Seymour asserts that every non-empty even-hole-free graph has a bisi
The class of even-hole-free graphs is very similar to the class of perfect graphs, and was indeed a cornerstone in the tools leading to the proof of the Strong Perfect Graph Theorem. However, the complexity of computing a maximum independent set (MIS
We give an $O(n^4)$ algorithm to find a minimum clique cover of a (bull, $C_4$)-free graph, or equivalently, a minimum colouring of a (bull, $2K_2$)-free graph, where $n$ is the number of vertices of the graphs.