ترغب بنشر مسار تعليمي؟ اضغط هنا

XMM-Newton Large Program on SN1006 - I: Methods and Initial Results of Spatially-Resolved Spectroscopy

58   0   0.0 ( 0 )
 نشر من قبل Jiang-Tao Li Dr.
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Jiang-Tao Li




اسأل ChatGPT حول البحث

Based on our newly developed methods and the XMM-Newton large program of SN1006, we extract and analyze the spectra from 3596 tessellated regions of this SNR each with 0.3-8 keV counts $>10^4$. For the first time, we map out multiple physical parameters, such as the temperature ($kT$), electron density ($n_e$), ionization parameter ($n_et$), ionization age ($t_{ion}$), metal abundances, as well as the radio-to-X-ray slope ($alpha$) and cutoff frequency ($ u_{cutoff}$) of the synchrotron emission. We construct probability distribution functions of $kT$ and $n_et$, and model them with several Gaussians, in order to characterize the average thermal and ionization states of such an extended source. We construct equivalent width (EW) maps based on continuum interpolation with the spectral model of each regions. We then compare the EW maps of OVII, OVIII, OVII K$delta-zeta$, Ne, Mg, SiXIII, SiXIV, and S lines constructed with this method to those constructed with linear interpolation. We further extract spectra from larger regions to confirm the features revealed by parameter and EW maps, which are often not directly detectable on X-ray intensity images. For example, O abundance is consistent with solar across the SNR, except for a low-abundance hole in the center. This O Hole has enhanced OVII K$delta-zeta$ and Fe emissions, indicating recently reverse shocked ejecta, but also has the highest $n_et$, indicating forward shocked ISM. Therefore, a multi-temperature model is needed to decompose these components. The asymmetric metal distributions suggest there is either an asymmetric explosion of the SN or an asymmetric distribution of the ISM.

قيم البحث

اقرأ أيضاً

Based on the XMM-Newton large program on SN1006 and our newly developed spatially resolved spectroscopy tools (Paper~I), we study the thermal emission from ISM and ejecta of SN1006 by analyzing the spectra extracted from 583 tessellated regions domin ated by thermal emission. With some key improvements in spectral analysis as compared to Paper~I, we obtain much better spectral fitting results with less residuals. The spatial distributions of the thermal and ionization states of the ISM and ejecta show different features, which are consistent with a scenario that the ISM (ejecta) is heated and ionized by the forward (reverse) shock propagating outward (inward). Different elements have different spatial distributions and origins, with Ne mostly from the ISM, Si and S from the ejecta, and O and Mg from both ISM and ejecta. Fe L-shell lines are only detected in a small shell-like region SE to the center of SN1006, indicating that most of the Fe-rich ejecta has not yet or just recently been reached by the reverse shock. The overall ejecta abundance patterns for most of the heavy elements, except for Fe and sometimes S, are consistent with typical Type~Ia SN products. The NW half of the SNR interior probably represents a region with turbulently mixed ISM and ejecta, so has enhanced emission from O, Mg, Si, S, lower ejecta temperature, and a large diversity of ionization age. In addition to the asymmetric ISM distribution, an asymmetric explosion of the progenitor star is also needed to explain the asymmetric ejecta distribution.
W49B is the youngest SNR to date that exhibits recombining plasma. The two prevailing theories of this overionization are rapid cooling via adiabatic expansion or through thermal conduction with an adjacent cooler medium. To constrain the origin of t he recombining plasma in W49B, we perform a spatially-resolved spectroscopic study of deep XMM-Newton data across 46 regions. We adopt a 3-component model (with one ISM and two ejecta components), and we find that recombining plasma is present throughout the entire SNR, with increasing overionization from east to west. The latter result is consistent with previous studies, and we attribute the overionization in the west to adiabatic expansion. However, our findings contrast these prior works as we find evidence of overionization in the east as well. As the SNR is interacting with molecular material there, we investigate the plausibility of thermal conduction as the origin of the rapid cooling. We show that based on the estimated timescales, it is possible that small-scale thermal conduction through evaporation of clumpy, dense clouds with a scale of 0.1-1.0 pc can explain the observed overionization in the east.
XMM-Newton is the direct precursor of the future ESA ATHENA mission. A study of its particle-induced background provides therefore significant insight for the ATHENA mission design. We make use of about 12 years of data, products from the third XMM-N ewton catalog as well as FP7 EXTraS project to avoid celestial sources contamination and to disentangle the different components of the XMM-Newton particle-induced background. Within the ESA R&D AREMBES collaboration, we built new analysis pipelines to study the different components of this background: this covers time behavior as well as spectral and spatial characteristics.
(abridged version) We present a detailed spectroscopic and timing analysis of X-ray observations of the bright radio-to-gamma-ray emitting pulsar PSR B0656+14, which were obtained simultaneously with eROSITA and XMM-Newton during the Calibration and Performance Verification phase of the Spektrum-Roentgen-Gamma mission (SRG) for 100 ks. Using XMM-Newton and NICER we firstly established an X-ray ephemeris for the time interval 2015 to 2020, which connects all X-ray observations in this period without cycle count alias and phase shifts. The mean eROSITA spectrum clearly reveals an absorption feature originating from the star at 570 eV with a Gaussian sigma of about 70 eV, tentatively identified earlier in a long XMM-Newton observation (Arumugasamy et al. 2018). A second absorption feature, described here as an absorption edge, occurs at 260-265 eV. It could be of atmospheric or of instrumental origin. These absorption features are superposed on various emission components, phenomenologically described as the sum of hot (120 eV) and cold (65 eV) blackbody components, both of photospheric origin, and a power-law with photon index Gamma=2. The phase-resolved spectroscopy reveals that the Gaussian absorption line at 570 eV is clearly present throughout ~60% of the spin cycle. The visibility of the line strength coincides in phase with the maximum flux of the hot blackbody. We also present three families of model atmospheres: a magnetised atmosphere, a condensed surface, and a mixed model, which were applied to the mean observed spectrum and whose continuum fit the observed data well. The atmosphere model, however, predicts too short distances. For the mixed model, the Gaussian absorption may be interpreted as proton cyclotron absorption in a field as high as 10^14 G, which is significantly higher than that derived from the moderate observed spin-down.
127 - I.E. Papadakis 2007
We present the results from the Fourier Resolved Spectroscopy of archival XMM-Newton data of five AGN, namely, Mrk 766, NGC 3516, NGC 3783, NGC 4051 and Ark 564. This work supplements the earlier study of MCG-6-30-15 as well as those of several Galac tic Black Hole Candidate sources. Our results exhibit much larger diversity than those of Galactic sources, a fact we attribute to the diversity of their masses. When we take into account this effect and combine our results with those from Cyg X-1, it seems reasonable to conclude that, at high frequencies, the slope of the Fourier-resolved spectra in accreting black hole systems decreases with increasing frequency as proportional to f^{-0.25}, irrespective of whether the system is in its High or Low state. This result implies that the flux variations in AGN are accompanied by complex spectral slope variations as well. We also find that the Fe Ka line in Mrk 766, NGC 3783 and NGC 4051 is variable on time scales ~day - 1 hour. The iron fluorescence line is absent in the spectra of the highest frequencies,and there is an indication that, just like in Cyg X-1, the equivalent width of the line in the Fourier-resolved of AGN decreases with increasing frequency.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا