ﻻ يوجد ملخص باللغة العربية
The relative cosmic variance ($sigma_v$) is a fundamental source of uncertainty in pencil-beam surveys and, as a particular case of count-in-cell statistics, can be used to estimate the bias between galaxies and their underlying dark-matter distribution. Our goal is to test the significance of the clustering information encoded in the $sigma_v$ measured in the ALHAMBRA survey. We measure the cosmic variance of several galaxy populations selected with $B-$band luminosity at $0.35 leq z < 1.05$ as the intrinsic dispersion in the number density distribution derived from the 48 ALHAMBRA subfields. We compare the observational $sigma_v$ with the cosmic variance of the dark matter expected from the theory, $sigma_{v,{rm dm}}$. This provides an estimation of the galaxy bias $b$. The galaxy bias from the cosmic variance is in excellent agreement with the bias estimated by two-point correlation function analysis in ALHAMBRA. This holds for different redshift bins, for red and blue subsamples, and for several $B-$band luminosity selections. We find that $b$ increases with the $B-$band luminosity and the redshift, as expected from previous work. Moreover, red galaxies have a larger bias than blue galaxies, with a relative bias of $b_{rm rel} = 1.4 pm 0.2$. Our results demonstrate that the cosmic variance measured in ALHAMBRA is due to the clustering of galaxies and can be used to characterise the $sigma_v$ affecting pencil-beam surveys. In addition, it can also be used to estimate the galaxy bias $b$ from a method independent of correlation functions.
We study the clustering of galaxies as a function of spectral type and redshift in the range $0.35 < z < 1.1$ using data from the Advanced Large Homogeneous Area Medium Band Redshift Astronomical (ALHAMBRA) survey. The data cover 2.381 deg$^2$ in 7 f
We present a clustering analysis of a sample of 238 Ly{$alpha$}-emitters at redshift 3<z<6 from the MUSE-Wide survey. This survey mosaics extragalactic legacy fields with 1h MUSE pointings to detect statistically relevant samples of emission line gal
Intrinsic variations of the projected density profiles of clusters of galaxies at fixed mass are a source of uncertainty for cluster weak lensing. We present a semi-analytical model to account for this effect, based on a combination of variations in
We study the clustering of galaxies as function of luminosity and redshift in the range $0.35 < z < 1.25$ using data from the Advanced Large Homogeneous Area Medium Band Redshift Astronomical (ALHAMBRA) survey. The ALHAMBRA data used in this work cov
We examine the distribution of the [O/Fe] abundance ratio in stars across the Galactic disk using H-band spectra from the Apache Point Galactic Evolution Experiment (APOGEE). We minimize systematic errors by considering groups of stars with similar a