ﻻ يوجد ملخص باللغة العربية
Structures and minimum molecular electrostatic potential (MEP) distributions in anacardic acid and some of its derivatives have been studied by full geometry optimization at the M06-2X/6-31G(d,p), WB97XD/6-31G(d,p) and B3LYP/6-31G(d,p) levels of density functional theory (DFT) in gas phase as well as in DMSO and aqueous solutions. Solvent effect was treated employing the integral equation formalism of the polarizable continuum model. Effects of modifications of the C1-side chain on the minimum MEP values in various regions were studied. Minimum MEP values near the oxygen atoms of the C2-OH group, oxygen or sulfur atoms of the C1-attached urea or thiourea groups and above or below the ring plane considered to be involved in interaction with the receptor were used to perform multiple linear regression. Experimentally observed anti-bacterial activities of these molecules against S. aureus are thus shown to be related to minimum MEP values in the above mentioned regions. Among the three DFT functionals used in the study, the M06-2X functional is found to yield most reliable results. Anti-bacterial activities have been predicted for certain molecules of the class which need to be verified experimentally.
Hydrogen bonds (HBs) play a crucial role in the physicochemical properties of ionic liquids (ILs). At present, HBs between cations and anions (Ca-An) or between cations (Ca-Ca) in ILs have been reported extensively. Here, we provided DFT evidences fo
The present work proposes to use density-functional theory (DFT) to correct for the basis-set error of wave-function theory (WFT). One of the key ideas developed here is to define a range-separation parameter which automatically adapts to a given bas
Chlorinated hydrocarbon compounds are of environmental concerns, since they are toxic to humans and other mammals, are widespread, and exposure is hard to avoid. Understanding and improving methods to reduce the amount of the substances is important.
We present a kinetic-energy density-functional theory and the corresponding kinetic-energy Kohn-Sham (keKS) scheme on a lattice and show that by including more observables explicitly in a density-functional approach already simple approximation strat
We report on the successful synthesis and hyperpolarization of N unprotected {alpha} amino acid ethyl acrylate esters and extensively, on an alanine derivative hyperpolarized by PHIP (4.4$pm$1% $^{13}$C-polarization), meeting required levels for in v