ترغب بنشر مسار تعليمي؟ اضغط هنا

Weighted Diffeomorphic Density Matching with Applications to Thoracic Image Registration

81   0   0.0 ( 0 )
 نشر من قبل Klas Modin
 تاريخ النشر 2015
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

In this article we study the problem of thoracic image registration, in particular the estimation of complex anatomical deformations associated with the breathing cycle. Using the intimate link between the Riemannian geometry of the space of diffeomorphisms and the space of densities, we develop an image registration framework that incorporates both the fundamental law of conservation of mass as well as spatially varying tissue compressibility properties. By exploiting the geometrical structure, the resulting algorithm is computationally efficient, yet widely general.



قيم البحث

اقرأ أيضاً

In this book chapter we study the Riemannian Geometry of the density registration problem: Given two densities (not necessarily probability densities) defined on a smooth finite dimensional manifold find a diffeomorphism which transforms one to the o ther. This problem is motivated by the medical imaging application of tracking organ motion due to respiration in Thoracic CT imaging where the fundamental physical property of conservation of mass naturally leads to modeling CT attenuation as a density. We will study the intimate link between the Riemannian metrics on the space of diffeomorphisms and those on the space of densities. We finally develop novel computationally efficient algorithms and demonstrate there applicability for registering RCCT thoracic imaging.
242 - Jianping Zhang , Yanyan Li 2021
Image registration has played an important role in image processing problems, especially in medical imaging applications. It is well known that when the deformation is large, many variational models cannot ensure diffeomorphism. In this paper, we pro pose a new registration model based on an optimal control relaxation constraint for large deformation images, which can theoretically guarantee that the registration mapping is diffeomorphic. We present an analysis of optimal control relaxation for indirectly seeking the diffeomorphic transformation of Jacobian determinant equation and its registration applications, including the construction of diffeomorphic transformation as a special space. We also provide an existence result for the control increment optimization problem in the proposed diffeomorphic image registration model with an optimal control relaxation. Furthermore, a fast iterative scheme based on the augmented Lagrangian multipliers method (ALMM) is analyzed to solve the control increment optimization problem, and a convergence analysis is followed. Finally, a grid unfolding indicator is given, and a robust solving algorithm for using the deformation correction and backtrack strategy is proposed to guarantee that the solution is diffeomorphic. Numerical experiments show that the registration model we proposed can not only get a diffeomorphic mapping when the deformation is large, but also achieves the state-of-the-art performance in quantitative evaluations in comparing with other classical models.
We present a Gauss-Newton-Krylov solver for large deformation diffeomorphic image registration. We extend the publicly available CLAIRE library to multi-node multi-graphics processing unit (GPUs) systems and introduce novel algorithmic modifications that significantly improve performance. Our contributions comprise ($i$) a new preconditioner for the reduced-space Gauss-Newton Hessian system, ($ii$) a highly-optimized multi-node multi-GPU implementation exploiting device direct communication for the main computational kernels (interpolation, high-order finite difference operators and Fast-Fourier-Transform), and ($iii$) a comparison with state-of-the-art CPU and GPU implementations. We solve a $256^3$-resolution image registration problem in five seconds on a single NVIDIA Tesla V100, with a performance speedup of 70% compared to the state-of-the-art. In our largest run, we register $2048^3$ resolution images (25 B unknowns; approximately 152$times$ larger than the largest problem solved in state-of-the-art GPU implementations) on 64 nodes with 256 GPUs on TACCs Longhorn system.
3D image registration is one of the most fundamental and computationally expensive operations in medical image analysis. Here, we present a mixed-precision, Gauss--Newton--Krylov solver for diffeomorphic registration of two images. Our work extends t he publicly available CLAIRE library to GPU architectures. Despite the importance of image registration, only a few implementations of large deformation diffeomorphic registration packages support GPUs. Our contributions are new algorithms to significantly reduce the run time of the two main computational kernels in CLAIRE: calculation of derivatives and scattered-data interpolation. We deploy (i) highly-optimized, mixed-precision GPU-kernels for the evaluation of scattered-data interpolation, (ii) replace Fast-Fourier-Transform (FFT)-based first-order derivatives with optimized 8th-order finite differences, and (iii) compare with state-of-the-art CPU and GPU implementations. As a highlight, we demonstrate that we can register $256^3$ clinical images in less than 6 seconds on a single NVIDIA Tesla V100. This amounts to over 20$times$ speed-up over the current version of CLAIRE and over 30$times$ speed-up over existing GPU implementations.
We present a parallel distributed-memory algorithm for large deformation diffeomorphic registration of volumetric images that produces large isochoric deformations (locally volume preserving). Image registration is a key technology in medical image a nalysis. Our algorithm uses a partial differential equation constrained optimal control formulation. Finding the optimal deformation map requires the solution of a highly nonlinear problem that involves pseudo-differential operators, biharmonic operators, and pure advection operators both forward and back- ward in time. A key issue is the time to solution, which poses the demand for efficient optimization methods as well as an effective utilization of high performance computing resources. To address this problem we use a preconditioned, inexact, Gauss-Newton- Krylov solver. Our algorithm integrates several components: a spectral discretization in space, a semi-Lagrangian formulation in time, analytic adjoints, different regularization functionals (including volume-preserving ones), a spectral preconditioner, a highly optimized distributed Fast Fourier Transform, and a cubic interpolation scheme for the semi-Lagrangian time-stepping. We demonstrate the scalability of our algorithm on images with resolution of up to $1024^3$ on the Maverick and Stampede systems at the Texas Advanced Computing Center (TACC). The critical problem in the medical imaging application domain is strong scaling, that is, solving registration problems of a moderate size of $256^3$---a typical resolution for medical images. We are able to solve the registration problem for images of this size in less than five seconds on 64 x86 nodes of TACCs Maverick system.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا