ترغب بنشر مسار تعليمي؟ اضغط هنا

Quantumness, Randomness and Computability

58   0   0.0 ( 0 )
 نشر من قبل Jorge G. Hirsch
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Randomness plays a central rol in the quantum mechanical description of our interactions. We review the relationship between the violation of Bell inequalities, non signaling and randomness. We discuss the challenge in defining a random string, and show that algorithmic information theory provides a necessary condition for randomness using Borel normality. We close with a view on incomputablity and its implications in physics.



قيم البحث

اقرأ أيضاً

74 - Xiao Yuan 2017
Quantum information processing shows advantages in many tasks, including quantum communication and computation, comparing to its classical counterpart. The essence of quantum processing lies on the fundamental difference between classical and quantum states. For a physical system, the coherent superposition on a computational basis is different from the statistical mixture of states in the same basis. Such coherent superposition endows the possibility of generating true random numbers, realizing parallel computing, and other classically impossible tasks such as quantum Bernoulli factory. Considering a system that consists of multiple parts, the coherent superposition that exists nonlocally on different systems is called entanglement. By properly manipulating entanglement, it is possible to realize computation and simulation tasks that are intractable with classical means. Investigating quantumness, coherent superposition, and entanglement can shed light on the original of quantum advantages and lead to the design of new quantum protocols. This thesis mainly focuses on the interplay between quantumness and two information tasks, randomness generation and selftesting quantum information processing. We discuss how quantumness can be used to generate randomness and show that randomness can in turn be used to quantify quantumness. In addition, we introduce the Bernoulli factory problem and present the quantum advantage with only coherence in both theory and experiment. Furthermore, we show a method to witness entanglement that is independent of the realization of the measurement. We also investigate randomness requirements in selftesting tasks and propose a random number generation scheme that is independent of the randomness source.
Algorithmic randomness theory starts with a notion of an individual random object. To be reasonable, this notion should have some natural properties; in particular, an object should be random with respect to image distribution if and only if it has a random preimage. This result (for computable distributions and mappings, and Martin-Lof randomness) was known for a long time (folklore); in this paper we prove its natural generalization for layerwise computable mappings, and discuss the related quantitative results.
Many constructions in computability theory rely on time tricks. In the higher setting, relativising to some oracles shows the necessity of these. We construct an oracle~$A$ and a set~$X$, higher Turing reducible to~$X$, but for which $Psi(A) e X$ for any higher functional~$Psi$ which is consistent on all oracles. We construct an oracle~$A$ relative to which there is no universal higher ML-test. On the other hand, we show that badness has its limits: there are no higher self-PA oracles, and for no~$A$ can we construct a higher $A$-c.e. set which is also higher $A$-ML-random. We study various classes of bad oracles and differentiate between them using other familiar classes. For example, bad oracles for consistent reductions can be higher ML-random, whereas bad oracles for universal tests cannot.
We consider a new model for the testing of untrusted quantum devices, consisting of a single polynomial-time bounded quantum device interacting with a classical polynomial-time verifier. In this model we propose solutions to two tasks - a protocol fo r efficient classical verification that the untrusted device is truly quantum, and a protocol for producing certifiable randomness from a single untrusted quantum device. Our solution relies on the existence of a new cryptographic primitive for constraining the power of an untrusted quantum device: post-quantum secure trapdoor claw-free functions which must satisfy an adaptive hardcore bit property. We show how to construct this primitive based on the hardness of the learning with errors (LWE) problem.
In this paper we investigate algorithmic randomness on more general spaces than the Cantor space, namely computable metric spaces. To do this, we first develop a unified framework allowing computations with probability measures. We show that any comp utable metric space with a computable probability measure is isomorphic to the Cantor space in a computable and measure-theoretic sense. We show that any computable metric space admits a universal uniform randomness test (without further assumption).
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا