ﻻ يوجد ملخص باللغة العربية
We prove a version of the Cauchy-Davenport theorem for general linear maps. For subsets $A,B$ of the finite field $mathbb{F}_p$, the classical Cauchy-Davenport theorem gives a lower bound for the size of the sumset $A+B$ in terms of the sizes of the sets $A$ and $B$. Our theorem considers a general linear map $L: mathbb{F}_p^n to mathbb{F}_p^m$, and subsets $A_1, ldots, A_n subseteq mathbb{F}_p$, and gives a lower bound on the size of $L(A_1 times A_2 times ldots times A_n)$ in terms of the sizes of the sets $A_1, ldots, A_n$. Our proof uses Alons Combinatorial Nullstellensatz and a variation of the polynomial method.
We give a new proof of the Cauchy-Davenport Theorem for linear maps given by Herdade et al., (2015). This theorem gives a lower bound on the size of the image of a linear map on a grid. Our proof is purely combinatorial and offers a partial insight i
We introduce a notion of complexity for systems of linear forms called sequential Cauchy-Schwarz complexity, which is parametrized by two positive integers $k,ell$ and refines the notion of Cauchy-Schwarz complexity introduced by Green and Tao. We pr
In this paper, we study growth rate of product of sets in the Heisenberg group over finite fields and the complex numbers. More precisely, we will give improvements and extensions of recent results due to Hegyv{a}ri and Hennecart (2018).
We obtain a unification of two refinements of Eulers partition theorem respectively due to Bessenrodt and Glaisher. A specialization of Bessenrodts insertion algorithm for a generalization of the Andrews-Olsson partition identity is used in our combinatorial construction.
In two papers, Little and Sellers introduced an exciting new combinatorial method for proving partition identities which is not directly bijective. Instead, they consider various sets of weighted tilings of a $1 times infty$ board with squares and do