ترغب بنشر مسار تعليمي؟ اضغط هنا

Monitoring method for neutron flux for a spallation target in an accelerator driven sub-critical system

63   0   0.0 ( 0 )
 نشر من قبل Zhiyong He
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper, we study a monitoring method for neutron flux for the spallation target used in an accelerator driven sub-critical (ADS) system, where a spallation target located vertically at the centre of a sub-critical core is bombarded vertically by high-energy protons from an accelerator. First, by considering the characteristics in the spatial variation of neutron flux from the spallation target, we propose a multi-point measurement technique, i.e. the spallation neutron flux should be measured at multiple vertical locations. To explain why the flux should be measured at multiple locations, we have studied neutron production from a tungsten target bombarded by a 250 MeV-proton beam with Geant4-based Monte Carlo simulations. The simulation results indicate that the neutron flux at the central location is up to three orders of magnitude higher than the flux at lower locations. Secondly, we have developed an effective technique in order to measure the spallation neutron flux with a fission chamber (FC), by establishing the relation between the fission rate measured by FC and the spallation neutron flux. Since this relation is linear for a FC, a constant calibration factor is used to derive the neutron flux from the measured fission rate. This calibration factor can be extracted from the energy spectra of spallation neutrons. Finally, we have evaluated the proposed calibration method for a FC in the environment of an ADS system. The results indicate that the proposed method functions very well.

قيم البحث

اقرأ أيضاً

We discuss the possibility to build a neutron target for nuclear reaction studies in inverse kinematics utilizing a storage ring and radioactive ion beams. The proposed neutron target is a specially designed spallation target surrounded by a large mo derator of heavy water (D$_2$O). We present the resulting neutron spectra and their properties as a target. We discuss possible realizations at different experimental facilities.
We report on our efforts to optimize the geometry of neutron moderators and converters for the TRIUMF UltraCold Advanced Neutron (TUCAN) source using MCNP simulations. It will use an existing spallation neutron source driven by a 19.3 kW proton beam delivered by TRIUMFs 520 MeV cyclotron. Spallation neutrons will be moderated in heavy water at room temperature and in liquid deuterium at 20 K, and then superthermally converted to ultracold neutrons in superfluid, isotopically purified $^4$He. The helium will be cooled by a $^3$He fridge through a $^3$He-$^4$He heat exchanger. The optimization took into account a range of engineering and safety requirements and guided the detailed design of the source. The predicted ultracold-neutron density delivered to a typical experiment is maximized for a production volume of 27 L, achieving a production rate of $1.4 cdot 10^7$ s$^{-1}$ to $1.6 cdot 10^7$ s$^{-1}$ with a heat load of 8.1 W. At that heat load, the fridge can cool the superfluid helium to 1.1 K, resulting in a storage lifetime for ultracold neutrons in the source of about 30 s. The most critical performance parameters are the choice of cold moderator and the volume, thickness, and material of the vessel containing the superfluid helium. The source is scheduled to be installed in 2021 and will enable the TUCAN collaboration to measure the electric dipole moment of the neutron with a sensitivity of $10^{-27}$ e cm.
This article presents the readout electronics of a novel beam monitoring system for ion research facility accelerator. The readout electronics are divided into Front-end Card (FEC) and Readout Control Unit (RCU). FEC uses Topmetal II minus to process es the energy of the hitting particles and convert it into a voltage signal. The main function of RCU is to digitize the analog output signal of FEC and format the raw data. On the other hand, the RCU also processes the control commands from the host and distributes the commands according to the mapping. The readout electronic has been characterized and calibrated in the laboratory, and have been installed with the detector. Implementation and testing of readout electronics have been discussed.
We present results from a first demonstration of a magnetic field monitoring system for a neutron electric dipole moment experiment. The system is designed to reconstruct the vector components of the magnetic field in the interior measurement region solely from exterior measurements.
An automatic target monitoring method based on photographs taken by a CMOS photo-camera has been developed for the MEG II detector. The technique could be adapted for other fixed-target experiments requiring good knowledge of their target position to avoid biases and systematic errors in measuring the trajectories of the outcoming particles. A CMOS-based, high resolution, high radiation tolerant and high magnetic field resistant photo-camera was mounted inside the MEG II detector at the Paul Scherrer Institute (Switzerland). MEG II is used to search for lepton flavour violation in muon decays. The photogrammetric methods challenges, affecting measurements of low momentum particles tracks, are high magnetic field of the spectrometer, high radiation levels, tight space constraints, and the need to limit the material budget in the tracking volume. The camera is focused on dot pattern drawn on the thin MEG II target, about 1 m away from the detector endcaps where the photo-camera is placed. Target movements and deformations are monitored by comparing images of the dots taken at various times during the measurement. The images are acquired with a Raspberry board and analyzed using a custom software. Global alignment to the spectrometer is guaranteed by corner cubes placed on the target support. As a result, the target monitoring fulfils the needs of the experiment.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا