ترغب بنشر مسار تعليمي؟ اضغط هنا

Fractional kinetics emerging from ergodicity breaking in random media

130   0   0.0 ( 0 )
 نشر من قبل Gianni Pagnini
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a modelling approach for diffusion in a complex medium characterized by a random length scale. The resulting stochastic process shows subdiffusion with a behavior in qualitative agreement with single particle tracking experiments in living cells, such as ergodicity breaking, p-variation and aging. In particular, this approach recapitulates characteristic features previously described in part by the fractional Brownian motion and in part by the continuous-time random walk. Moreover, for a proper distribution of the length scale, a single parameter controls the ergodic-to-nonergodic transition and, remarkably, also drives the transition of the diffusion equation of the process from non-fractional to fractional, thus demonstrating that fractional kinetics emerges from ergodicity breaking.



قيم البحث

اقرأ أيضاً

We study the spectral properties of $D$-dimensional $N=2$ supersymmetric lattice models. We find systematic departures from the eigenstate thermalization hypothesis (ETH) in the form of a degenerate set of ETH-violating supersymmetric (SUSY) doublets , also referred to as many-body scars, that we construct analytically. These states are stable against arbitrary SUSY-preserving perturbations, including inhomogeneous couplings. For the specific case of two-leg ladders, we provide extensive numerical evidence that shows how those states are the only ones violating the ETH, and discuss their robustness to SUSY-violating perturbations. Our work suggests a generic mechanism to stabilize quantum many-body scars in lattice models in arbitrary dimensions.
We present here for the first time a unifying perspective for the lack of equipartition in non-linear ordered systems and the low temperature phase-space fragmentation in disordered systems. We demonstrate that they are just two manifestation of the same underlying phenomenon: ergodicity breaking. Inspired by recent experiments, suggesting that lasing in optically active disordered media is related to an ergodicity-breaking transition, we studied numerically a statistical mechanics model for the nonlinearly coupled light modes in a disordered medium under external pumping. Their collective behavior appears to be akin to the one displayed around the ergodicity-breaking transition in glasses, as we show measuring the glass order parameter of the replica-symmetry-breaking theory. Most remarkably, we also find that at the same critical point a breakdown of energy equipartition among light modes occurs, the typical signature of ergodicity breaking in non-linear systems as the celebrated Fermi-Pasta-Ulam model. The crucial ingredient of our system which allows us to find equipartition breakdown together with replica symmetry breaking is that the amplitudes of light modes are locally unbounded, i.e., they are only subject to a global constraint. The physics of random lasers appears thus as a unique test-bed to develop under a unifying perspective the study of ergodicity breaking in statistical disordered systems and non-linear ordered ones.
We consider an overdamped Brownian particle moving in a confining asymptotically logarithmic potential, which supports a normalized Boltzmann equilibrium density. We derive analytical expressions for the two-time correlation function and the fluctuat ions of the time-averaged position of the particle for large but finite times. We characterize the occurrence of aging and nonergodic behavior as a function of the depth of the potential, and support our predictions with extensive Langevin simulations. While the Boltzmann measure is used to obtain stationary correlation functions, we show how the non-normalizable infinite covariant density is related to the super-aging behavior.
In this paper we present a study of the early stages of unstable state evolution of systems with spatial symmetry changes. In contrast to the early time linear theory of unstable evolution described by Cahn, Hilliard, and Cook, we develop a generaliz ed theory that predicts two distinct stages of the early evolution for symmetry breaking phase transitions. In the first stage the dynamics is dominated by symmetry preserving evolution. In the second stage, which shares some characteristics with the Cahn-Hilliard-Cook theory, noise driven fluctuations break the symmetry of the initial phase on a time scale which is large compared to the first stage for systems with long interaction ranges. To test the theory we present the results of numerical simulations of the initial evolution of a long-range antiferromagnetic Ising model quenched into an unstable region. We investigate two types of symmetry breaking transitions in this system: disorder-to-order and order-to-order transitions. For the order-to-order case, the Fourier modes evolve as a linear combination of exponentially growing or decaying terms with different time scales.
506 - Stas Burov 2010
Anomalous diffusion has been widely observed by single particle tracking microscopy in complex systems such as biological cells. The resulting time series are usually evaluated in terms of time averages. Often anomalous diffusion is connected with no n-ergodic behaviour. In such cases the time averages remain random variables and hence irreproducible. Here we present a detailed analysis of the time averaged mean squared displacement for systems governed by anomalous diffusion, considering both unconfined and restricted (corralled) motion. We discuss the behaviour of the time averaged mean squared displacement for two prominent stochastic processes, namely, continuous time random walks and fractional Brownian motion. We also study the distribution of the time averaged mean squared displacement around its ensemble mean, and show that this distribution preserves typical process characteristic even for short time series. Recently, velocity correlation functions were suggested to distinguish between these processes. We here present analytucal expressions for the velocity correlation functions. Knowledge of the results presented here are expected to be relevant for the correct interpretation of single particle trajectory data in complex systems.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا