ﻻ يوجد ملخص باللغة العربية
An electron-tracking Compton camera (ETCC) is a detector that can determine the arrival direction and energy of incident sub-MeV/MeV gamma-ray events on an event-by-event basis. It is a hybrid detector consisting of a gaseous time projection chamber (TPC), that is the Compton-scattering target and the tracker of recoil electrons, and a position-sensitive scintillation camera that absorbs of the scattered gamma rays, to measure gamma rays in the environment from contaminated soil. To measure of environmental gamma rays from soil contaminated with radioactive cesium (Cs), we developed a portable battery-powered ETCC system with a compact readout circuit and data-acquisition system for the SMILE-II experiment. We checked the gamma-ray imaging ability and ETCC performance in the laboratory by using several gamma-ray point sources. The performance test indicates that the field of view (FoV) of the detector is about 1$;$sr and that the detection efficiency and angular resolution for 662$;$keV gamma rays from the center of the FoV is $(9.31 pm 0.95) times 10^{^-5}$ and $5.9^{circ} pm 0.6^{circ}$, respectively. Furthermore, the ETCC can detect 0.15$;murm{Sv/h}$ from a $^{137}$Cs gamma-ray source with a significance of 5$sigma$ in 13 min in the laboratory. In this paper, we report the specifications of the ETCC and the results of the performance tests. Furthermore, we discuss its potential use for environmental gamma-ray measurements.
Electron-tracking Compton camera, which is a complete Compton camera with tracking Compton scattering electron by a gas micro time projection chamber, is expected to open up MeV gamma-ray astronomy. The technical challenge for achieving several degre
A sensitive survey of the MeV gamma-ray sky is needed to understand important astrophysical problems such as gamma-ray bursts in the early universe, progenitors of Type Ia supernovae, and the nature of dark matter. However, the study has not progress
For MeV gamma-ray astronomy, we have developed an electron-tracking Compton camera (ETCC) as a MeV gamma-ray telescope capable of rejecting the radiation background and attaining the high sensitivity of near 1 mCrab in space. Our ETCC comprises a gas
X-ray and gamma-ray polarimetry is a promising tool to study the geometry and the magnetic configuration of various celestial objects, such as binary black holes or gamma-ray bursts (GRBs). However, statistically significant polarizations have been d
Full functional and performance tests were performed many times before the Hard X-ray Modulation Telescope (HXMT) launch. During one of the tests, the count rate curves of the 18 High Energy Detectors (HED) have been found increased consistently with