ترغب بنشر مسار تعليمي؟ اضغط هنا

Desingularization of quiver Grassmannians for Gentle algebras

152   0   0.0 ( 0 )
 نشر من قبل Ming Lu
 تاريخ النشر 2015
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Following [20], a desingularization of arbitrary quiver Grassmannians for finite dimensional Gorenstein projective modules of 1-Gorenstein gentle algebras is constructed in terms of quiver Grassmannians for their Cohen-Macaulay Auslander algebras.



قيم البحث

اقرأ أيضاً

We show that Auslander algebras have a unique tilting and cotilting module which is generated and cogenerated by a projective-injective; its endomorphism ring is called the projective quotient algebra. For any representation-finite algebra, we use th e projective quotient algebra to construct desingularizations of quiver Grassmannians, orbit closures in representation varieties, and their desingularizations. This generalizes results of Cerulli Irelli, Feigin and Reineke.
153 - Xinhong Chen , Ming Lu 2015
For any gentle algebra $Lambda=KQ/langle Irangle$, following Kalck, we describe the quiver and the relations for its Cohen-Macaulay Auslander algebra $mathrm{Aus}(mathrm{Gproj}Lambda)$ explicitly, and obtain some properties, such as $Lambda$ is repre sentation-finite if and only if $mathrm{Aus}(mathrm{Gproj}Lambda)$ is; if $Q$ has no loop and any indecomposable $Lambda$-module is uniquely determined by its dimension vector, then any indecomposable $mathrm{Aus}(mathrm{Gproj}Lambda)$-module is uniquely determined by its dimension vector.
We provide the localization procedure for monoidal categories by a real commuting family of braiders. For an element $w$ of the Weyl group, $mathscr{C}_w$ is a subcategory of modules over quiver Hecke algebra which categorifies the quantum unipotent coordinate algebra $A_q[mathfrak{n}(w)]$. We construct the localization $widetilde{mathscr{C}_w}$ of $mathscr{C}_w$ by adding the inverses of simple modules which correspond to the frozen variables in the quantum cluster algebra $A_q[mathfrak{n}(w)]$. The localization $widetilde{mathscr{C}_w}$ is left rigid and we expect that it is rigid.
133 - Xinhong Chen , Ming Lu 2014
Let $K$ be an algebraically closed field. Let $(Q,Sp,I)$ be a skewed-gentle triple, $(Q^{sg},I^{sg})$ and $(Q^g,I^{g})$ be its corresponding skewed-gentle pair and associated gentle pair respectively. It proves that the skewed-gentle algebra $KQ^{sg} /< I^{sg}>$ is singularity equivalent to $KQ/< I>$. Moreover, we use $(Q,Sp,I)$ to describe the singularity category of $KQ^g/< I^g>$. As a corollary, we get that $mathrm{gldim} KQ^{sg}/< I^{sg}><infty$ if and only if $mathrm{gldim} KQ/< I><infty$ if and only if $mathrm{gldim} KQ^{g}/< I^{g}><infty$.
For a finite-dimensional gentle algebra, it is already known that the functorially finite torsion classes of its category of finite-dimensional modules can be classified using a combinatorial interpretation, called maximal non-crossing sets of string s, of the corresponding support $tau$-tilting module (or equivalently, two-term silting complexes). In the topological interpretation of gentle algebras via marked surfaces, such a set can be interpreted as a dissection (or partial triangulation), or equivalently, a lamination that does not contain a closed curve. We will refine this combinatorics, which gives us a classification of torsion classes in the category of finite length modules over a (possibly infinite-dimensional) gentle algebra. As a consequence, our result also unifies the functorially finite torsion class classification of finite-dimensional gentle algebras with certain classes of special biserial algebras - such as Brauer graph algebras.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا