ترغب بنشر مسار تعليمي؟ اضغط هنا

Supernova Neutrinos: Production, Oscillations and Detection

122   0   0.0 ( 0 )
 نشر من قبل Alessandro Mirizzi
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Neutrinos play a crucial role in the collapse and explosion of massive stars, governing the infall dynamics of the stellar core, triggering and fueling the explosion and driving the cooling and deleptonization of the newly formed neutron star. Due to their role neutrinos carry information from the heart of the explosion and, due to their weakly interacting nature, offer the only direct probe of the dynamics and thermodynamics at the center of a supernova. In this paper, we review the present status of modelling the neutrino physics and signal formation in collapsing and exploding stars. We assess the capability of current and planned large underground neutrino detectors to yield faithful information of the time and flavor dependent neutrino signal from a future Galactic supernova. We show how the observable neutrino burst would provide a benchmark for fundamental supernova physics with unprecedented richness of detail. Exploiting the treasure of the measured neutrino events requires a careful discrimination of source-generated properties from signal features that originate on the way to the detector. As for the latter, we discuss self-induced flavor



قيم البحث

اقرأ أيضاً

172 - Enrico Borriello 2012
Neutrino oscillations in the Earth matter may introduce peculiar modulations in the supernova (SN) neutrino spectra. The detection of this effect has been proposed as diagnostic tool for the neutrino mass hierarchy at large 1-3 leptonic mixing angle theta13. We perform an updated study on the observability of this effect at large next-generation underground detectors (i.e., 0.4 Mton water Cherenkov, 50 kton scintillation and 100 kton liquid Argon detectors) based on neutrino fluxes from state-of-the-art SN simulations and accounting for statistical fluctuations via Montecarlo simulations. Since the average energies predicted by recent simulations are lower than previously expected and a tendency towards the equalization of the neutrino fluxes appears during the SN cooling phase, the detection of the Earth matter effect will be more challenging than expected from previous studies. We find that none of the proposed detectors shall be able to detect the Earth modulation for the neutrino signal of a typical galactic SN at 10 kpc. It should be observable in a 100 kton liquid Argon detector for a SN at few kpc and all three detectors would clearly see the Earth signature for very close-by stars only (d ~ 0.2 kpc). Finally, we show that adopting IceCube as co-detector together with a Mton water Cherenkov detector is not a viable option either.
223 - A. Wongwathanarat 2016
The spatial and velocity distributions of nuclear species synthesized in the innermost regions of core-collapse supernovae can yield important clues about explosion asymmetries and the operation of the still disputed explosion mechanism. Recent obser vations of radioactive $^{44}$Ti with high-energy satellite telescopes (Nuclear Spectroscopic Telescope Array [NuSTAR], INTEGRAL) have measured gamma-ray line details, which provide direct evidence of large-scale explosion asymmetries in SN 1987A and in Cassiopeia A (Cas A) even by mapping of the spatial brightness distribution (NuSTAR). Here we discuss a 3D simulation of a neutrino-driven explosion, using a parameterized neutrino engine, whose $^{44}$Ti distribution is mostly concentrated in one hemisphere pointing opposite to the neutron star (NS) kick velocity. Both exhibit intriguing resemblance to the observed morphology of the Cas A remnant, although neither the progenitor nor the explosion was fine-tuned for a perfect match. Our results demonstrate that the asymmetries observed in this remnant can, in principle, be accounted for by a neutrino-driven explosion, and that the high $^{44}$Ti abundance in Cas A may be explained without invoking rapid rotation or a jet-driven explosion, because neutrino-driven explosions generically eject large amounts of high-entropy matter. The recoil acceleration of the NS is connected to mass ejection asymmetries and is opposite to the direction of the stronger explosion, fully compatible with the gravitational tugboat mechanism. Our results also imply that Cas A and SN 1987A could possess similarly one-sided Ti and Fe asymmetries, with the difference that Cas A is viewed from a direction with large inclination angle to the NS motion, whereas the NS in SN 1987A should have a dominant velocity component pointing toward us.
93 - J.F. Beacom 1999
Core-collapse supernovae emit of order $10^{58}$ neutrinos and antineutrinos of all flavors over several seconds, with average energies of 10--25 MeV. In the Sudbury Neutrino Observatory (SNO), a future Galactic supernova at a distance of 10 kpc woul d cause several hundred events. The $ u_mu$ and $ u_tau$ neutrinos and antineutrinos are of particular interest, as a test of the supernova mechanism. In addition, it is possible to measure or limit their masses by their delay (determined from neutral-current events) relative to the $bar{ u}_e$ neutrinos (determined from charged-current events). Numerical results are presented for such a future supernova as seen in SNO. Under reasonable assumptions, and in the presence of the expected counting statistics, a $ u_mu$ or $ u_tau$ mass down to about 30 eV can be simply and robustly determined. This seems to be the best technique for direct measurement of these masses.
102 - Kimitake Hayasaki 2021
Tidal disruption events are an excellent probe for supermassive black holes in distant inactive galaxies because they show bright multi-wavelength flares lasting several months to years. AT2019dsg presents the first potential association with neutrino emission from such an explosive event.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا