ترغب بنشر مسار تعليمي؟ اضغط هنا

Optical-Infrared Properties of Faint 1.3 mm Sources Detected with ALMA

56   0   0.0 ( 0 )
 نشر من قبل Bunyo Hatsukade
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report optical-infrared (IR) properties of faint 1.3 mm sources (S_1.3mm = 0.2-1.0 mJy) detected with the Atacama Large Millimeter/submillimeter Array (ALMA) in the Subaru/XMM-Newton Deep Survey (SXDS) field. We searched for optical/IR counterparts of 8 ALMA-detected sources (>=4.0 sigma, the sum of the probability of spurious source contamination is ~1) in a K-band source catalog. Four ALMA sources have K-band counterpart candidates within a 0.4 radius. Comparison between ALMA-detected and undetected K-band sources in the same observing fields shows that ALMA-detected sources tend to be brighter, more massive, and more actively forming stars. While many of the ALMA-identified submillimeter-bright galaxies (SMGs) in previous studies lie above the sequence of star-forming galaxies in stellar mass--star-formation rate plane, our ALMA sources are located in the sequence, suggesting that the ALMA-detected faint sources are more like `normal star-forming galaxies rather than `classical SMGs. We found a region where multiple ALMA sources and K-band sources reside in a narrow photometric redshift range (z ~ 1.3-1.6) within a radius of 5 (42 kpc if we assume z = 1.45). This is possibly a pre-merging system and we may be witnessing the early phase of formation of a massive elliptical galaxy.



قيم البحث

اقرأ أيضاً

We present a catalog of 26 faint submillimeter galaxies (SMGs) in the XMM-LSS field identified by cross-matching serendipitously detected sources in archival ALMA Band 6 and 7 data with multi-band near-infrared (NIR) and optical data from the Spitzer Extragalactic Representative Volume Survey, the VISTA Deep Extragalactic Survey, the Canada-France-Hawaii Telescope Legacy Large Survey, and the Hyper Suprime-Cam Subaru Strategic Program. Of the 26 SMGs in our sample, 15 are identified here for the first time. The majority of the sources in our sample (16/26) have faint submm fluxes ($0.1,{rm mJy} < S_{rm 1,mm} < 1,{rm mJy}$). In addition to the 26 SMGs with multi-band optical and NIR detections, there are 60 highly-reliable ($>5sigma$) ALMA sources with no counterpart in any other band down to an IRAC [4.5] $AB$ magnitude of $approx 23.7$. To further characterize the 26 galaxies with both ALMA and optical/NIR counterparts, we provide 13-band forced photometry for the entire catalog using the Tractor and calculate photometric redshifts and rest-frame colors. The median redshift of our sample is $langle z rangle = 2.66$. We find that our sample galaxies have bluer colors compared to bright SMGs, and the UVJ color plot indicates that their colors are consistent with main sequence star-forming galaxies. Our results provide new insights into the nature of the faint population of SMGs, and also highlight opportunities for galaxy evolution studies based on archival ALMA data.
We study the environments of 49 WISE/NVSS-selected dusty, hyper-luminous, z~2 quasars using the Atacama Large Millimeter/Sub-millimeter Array (ALMA) 345GHz images. We find that 17 of the 49 WISE/NVSS sources show additional sub-mm galaxies within the ALMA primary beam, probing scales within ~150 kpc. We find a total of 23 additional sub-mm sources, four of which in the field of a single WISE/NVSS source. The measured 870 um source counts are ~10 times expectations for unbiased regions, suggesting such hyper-luminous dusty quasars are excellent at probing high-density peaks.
We present ALMA Band 6 observations (1.3 mm/233 GHz) of Fomalhaut and its debris disc. The observations achieve a sensitivity of 17 $mu$Jy and a resolution of 0.28 arcsec (2.1 au at a distance of 7.66 pc), which are the highest resolution observation s to date of the millimetre grains in Fomalhauts main debris ring. The ring is tightly constrained to $139^{+2}_{-3}$ au with a FWHM of $13pm3$ au, following a Gaussian profile. The millimetre spectral index is constrained to $alpha_{mm} = -2.62pm0.12$. We explore fitting debris disc models in the image plane, as well as fitting models using visibility data directly. The results are compared and the potential advantages/disadvantages of each approach are discussed. The detected central emission is indistinguishable from a point source, with a most probable flux of $0.90pm 0.12$ mJy (including calibration uncertainties). This implies that any inner debris structure, as was inferred from far-Infrared observations, must contribute little to the total central emission. Moreover, the stellar flux is less than 70% of that predicted by extrapolating a black body from the constrained stellar photosphere temperature. This result emphasizes that unresolved inner debris components cannot be fully characterized until the behaviour of the host stars intrinsic stellar emission at millimetre wavelengths is properly understood.
Infrared-faint radio sources (IFRS) are objects that have flux densities of several mJy at 1.4GHz, but that are invisible at 3.6um when using sensitive Spitzer observations with uJy sensitivities. Their nature is unclear and difficult to investigate since they are only visible in the radio. High-resolution radio images and comprehensive spectral coverage can yield constraints on the emission mechanisms of IFRS and can give hints to similarities with known objects. We imaged a sample of 17 IFRS at 4.8GHz and 8.6GHz with the Australia Telescope Compact Array to determine the structures on arcsecond scales. We added radio data from other observing projects and from the literature to obtain broad-band radio spectra. We find that the sources in our sample are either resolved out at the higher frequencies or are compact at resolutions of a few arcsec, which implies that they are smaller than a typical galaxy. The spectra of IFRS are remarkably steep, with a median spectral index of -1.4 and a prominent lack of spectral indices larger than -0.7. We also find that, given the IR non-detections, the ratio of 1.4GHz flux density to 3.6um flux density is very high, and this puts them into the same regime as high-redshift radio galaxies. The evidence that IFRS are predominantly high-redshift sources driven by active galactic nuclei (AGN) is strong, even though not all IFRS may be caused by the same phenomenon. Compared to the rare and painstakingly collected high-redshift radio galaxies, IFRS appear to be much more abundant, but less luminous, AGN-driven galaxies at similar cosmological distances.
We report detections of two 1.2 mm continuum sources ($S_mathrm{1.2mm}$ ~ 0.6 mJy) without any counterparts in the deep $H$- and/or $K$-band image (i.e., $K$-band magnitude $gtrsim$ 26 mag). These near-infrared-dark faint millimeter sources are uncov ered by ASAGAO, a deep and wide-field ($simeq$ 26 arcmin$^2$) Atacama Large Millimeter/submillimeter Array (ALMA) 1.2 mm survey. One has a red IRAC (3.6 and 4.5 $mu$m) counterpart, and the other has been independently detected at 850 and 870 $mu$m using SCUBA2 and ALMA Band 7, respectively. Their optical to radio spectral energy distributions indicate that they can lie at $z gtrsim$ 3-5 and can be in the early phase of massive galaxy formation. Their contribution to the cosmic star formation rate density is estimated to be ~ 1 $times$ 10$^{-3}$ $M_odot$ yr$^{-1}$ Mpc$^{-3}$ if they lie somewhere in the redshift range of $z$ ~ 3-5. This value can be consistent with, or greater than that of bright submillimeter galaxies ($S_mathrm{870mu m}>$ 4.2 mJy) at $z$ ~ 3-5. We also uncover 3 more candidates near-infrared-dark faint ALMA sources without any counterparts ($S_mathrm{1.2mm}$ ~ 0.45-0.86 mJy). These results show that an unbiased ALMA survey can reveal the dust-obscured star formation activities, which were missed in previous deep optical/near-infrared surveys.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا