ﻻ يوجد ملخص باللغة العربية
We report $^{75}$As nuclear magnetic resonance (NMR) measurements of single-crystalline Ca(Fe$_{1-x}$Co$_x$)$_2$As$_2$ ($x$ = 0.023, 0.028, 0.033, and 0.059) annealed at 350~$^{circ}$C for 7 days. From the observation of a characteristic shape of $^{75}$As NMR spectra in the stripe-type antiferromagnetic (AFM) state, as in the case of $x$ = 0 ($T_{rm N}$ = 170 K), clear evidence for the commensurate AFM phase transition with the concomitant structural phase transition is observed in $x$ = 0.023 ($T_{rm N}$ = 106 K) and $x$ = 0.028 ($T_{rm N}$ = 53 K). Through the temperature dependence of the Knight shifts and the nuclear spin lattice relaxation rates (1/$T_1$), although stripe-type AFM spin fluctuations are realized in the paramagnetic state as in the case of other iron pnictide superconductors, we found a gradual decrease of the AFM spin fluctuations below a crossover temperature $T^*$ which was nearly independent of Co-substitution concentration, and is attributed to a pseudogap-like behavior in the spin excitation spectra of these systems. The $T^*$ feature finds correlation with features in the temperature-dependent inter-plane resistivity, $rho_c(T)$, but not with the in-plane resistivity $rho _a (T)$. The temperature evolution of anisotropic stripe-type AFM spin fluctuations are tracked in the paramagnetic and pseudogap phases by the 1/$T_1$ data measured under magnetic fields parallel and perpendicular to the $c$ axis. Based on our NMR data, we have added a pseudogap-like phase to the magnetic and electronic phase diagram of Ca(Fe$_{1-x}$Co$_x$)$_2$As$_2$.
Recent nuclear magnetic resonance (NMR) measurements revealed the coexistence of stripe-type antiferromagnetic (AFM) and ferromagnetic (FM) spin correlations in both the hole- and electron-doped BaFe$_2$As$_2$ families of iron-pnictide superconductor
Inelastic neutron scattering measurements have been performed on underdoped Ba(Fe1-xCox)2As2 (x = 4.7%) where superconductivity and long-range antiferromagnetic (AFM) order coexist. The broad magnetic spectrum found in the normal state develops into
Iron-based high temperature superconductivity develops when the `parent antiferromagnetic/orthorhombic phase is suppressed, typically by introduction of dopant atoms. But their impact on atomic-scale electronic structure, while in theory quite comple
We report muon spin rotation ($mu$SR) measurements of single crystal Ba(Fe$_{1-x}$Co$_x$)$_2$As$_2$ and Sr(Fe$_{1-x}$Co$_x$)$_2$As$_2$. From measurements of the magnetic field penetration depth $lambda$ we find that for optimally- and over-doped samp
We investigate the nature of the SDW (Spin Density Wave) transition in the underdoped regime of an iron-based high Tc superconductor Ba(Fe1-xCox)2As2 by 75As NMR, with primary focus on a composition with x = 0.02 (T_SDW = 99 K).We demonstrate that cr