ﻻ يوجد ملخص باللغة العربية
The energy spacing between the ground-state spin doublet of $^4_Lambda $He(1$^+$,0$^+$) was determined to be $1406 pm 2 pm 2$ keV, by measuring $gamma$ rays for the $1^+ to 0^+$ transition with a high efficiency germanium detector array in coincidence with the $^4$He$(K^-,pi^-)$ $^4_Lambda $He reaction at J-PARC. In comparison to the corresponding energy spacing in the mirror hypernucleus $^4_Lambda $H, the present result clearly indicates the existence of charge symmetry breaking (CSB) in $Lambda N$ interaction. It is also found that the CSB effect is large in the $0^+$ ground state but is by one order of magnitude smaller in the $1^+$ excited state, demonstrating that the $Lambda N$ CSB interaction has spin dependence.
Level structure of the $^{12}_{Lambda}$C hypernucleus was precisely determined by means of $gamma$-ray spectroscopy. We identified four $gamma$-ray transitions via the $^{12}$C$(pi^{+},K^{+}gamma)$ reaction using a germanium detector array, Hyperball
The missing mass spectroscopy of the $^{7}_{Lambda}$He hypernucleus was performed, using the $^{7}$Li$(e,e^{prime}K^{+})^{7}_{Lambda}$He reaction at the Thomas Jefferson National Accelerator Facility Hall C. The $Lambda$ binding energy of the ground
Background: Models to calculate small isospin-symmetry-breaking effects in superallowed Fermi decays have been placed under scrutiny in recent years. A stringent test of these models is to measure transitions for which the correction is predicted to
Three candidate events of the neutron-rich hypernucleus 6{Lambda}H were uniquely identified in the FINUDA experiment at DA{Phi}NE, Frascati, by observing {pi}+ mesons from the (K-stop,{pi}+) production reaction on 6Li targets, in coincidence with {pi
We study the central part of Lambda N and Lambda Lambda potential by considering the correlated and uncorrelated two-meson exchange besides the omega exchange contribution. The correlated two-meson is evaluated in a chiral unitary approach. We find t