ترغب بنشر مسار تعليمي؟ اضغط هنا

CHEOPS performance for exomoons: The detectability of exomoons by using optimal decision algorithm

63   0   0.0 ( 0 )
 نشر من قبل Laszlo L. Kiss
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Many attempts have already been made for detecting exomoons around transiting exoplanets but the first confirmed discovery is still pending. The experience that have been gathered so far allow us to better optimize future space telescopes for this challenge, already during the development phase. In this paper we focus on the forthcoming CHaraterising ExOPlanet Satellite (CHEOPS),describing an optimized decision algorithm with step-by-step evaluation, and calculating the number of required transits for an exomoon detection for various planet-moon configurations that can be observable by CHEOPS. We explore the most efficient way for such an observation which minimizes the cost in observing time. Our study is based on PTV observations (photocentric transit timing variation, Szabo et al. 2006) in simulated CHEOPS data, but the recipe does not depend on the actual detection method, and it can be substituted with e.g. the photodynamical method for later applications. Using the current state-of-the-art level simulation of CHEOPS data we analyzed transit observation sets for different star-planet-moon configurations and performed a bootstrap analysis to determine their detection statistics. We have found that the detection limit is around an Earth-sized moon. In the case of favorable spatial configurations, systems with at least such a large moon and with at least Neptune-sized planet, 80% detection chance requires at least 5-6 transit observations on average. There is also non-zero chance in the case of smaller moons, but the detection statistics deteriorates rapidly, while the necessary transit measurements increase fast. (abridged)



قيم البحث

اقرأ أيضاً

62 - J. Tjoa , M. Mueller (1 , 2 2020
Assuming our Solar System as typical, exomoons may outnumber exoplanets. If their habitability fraction is similar, they would thus constitute the largest portion of habitable real estate in the Universe. Icy moons in our Solar System, such as Europa and Enceladus, have already been shown to possess liquid water, a prerequisite for life on Earth. We intend to investigate under what circumstances small, icy moons may sustain subsurface oceans and thus be subsurface habitable. We pay specific attention to tidal heating. We made use of a phenomenological approach to tidal heating. We computed the orbit averaged flux from both stellar and planetary (both thermal and reflected stellar) illumination. We then calculated subsurface temperatures depending on illumination and thermal conduction to the surface through the ice shell and an insulating layer of regolith. We adopted a conduction only model, ignoring volcanism and ice shell convection as an outlet for internal heat. In doing so, we determined at which depth, if any, ice melts and a subsurface ocean forms. We find an analytical expression between the moons physical and orbital characteristics and the melting depth. Since this expression directly relates icy moon observables to the melting depth, it allows us to swiftly put an upper limit on the melting depth for any given moon. We reproduce the existence of Enceladus subsurface ocean; we also find that the two largest moons of Uranus (Titania & Oberon) could well sustain them. Our model predicts that Rhea does not have liquid water. Habitable exomoon environments may be found across an exoplanetary system, largely irrespective of the distance to the host star. Small, icy subsurface habitable moons may exist anywhere beyond the snow line. This may, in future observations, expand the search area for extraterrestrial habitable environments beyond the circumstellar habitable zone.
The satellites of extrasolar planets (exomoons) have been recently proposed as astrobiological targets. Since giant planets in the habitable zone are thought to have migrated there, it is possible that they may have captured a former terrestrial plan et or planetesimal. We therefore attempt to model the dynamical evolution of a terrestrial planet captured into orbit around a giant planet in the habitable zone of a star. We find that approximately half of loose elliptical orbits result in stable circular orbits over timescales of less than a few million years. We also find that those orbits are mostly low-inclination, but have no prograde/retrograde preference. In addition, we calculate the transit timing and duration variations for the resulting systems, and find that potentially habitable Earth-mass exomoons should be detectable.
We present evidence that excesses in Be in polluted white dwarfs (WDs) are the result of accretion of icy exomoons that formed in the radiation belts of giant exoplanets. Here we use excess Be in the white dwarf GALEX J2339-0424 as an example. We con strain the parent body abundances of rock-forming elements in GALEX J2339-0424 and show that the overabundance of beryllium in this WD cannot be accounted for by differences in diffusive fluxes through the WD outer envelope nor by chemical fractionations during typical rock-forming processes. We argue instead that the Be was produced by energetic proton irradiation of ice mixed with rock. We demonstrate that the MeV proton fluence required to form the high Be/O ratio in the accreted parent body is consistent with irradiation of ice in the rings of a giant planet within its radiation belt, followed by accretion of the ices to form a moon that is later accreted by the WD. The icy moons of Saturn serve as useful analogs. Our results provide an estimate of spallogenic nuclide excesses in icy moons formed by rings around giant planets in general, including those in the solar system. While excesses in Be have been detected in two polluted WDs to date, including the WD described here, we predict that excesses in the other spallogenic elements Li and B, although more difficult to detect, should also be observed, and that such detections would also indicate pollution by icy exomoons formed in the ring systems of giant planets.
The Kepler mission has detected a number of transiting circumbinary planets (CBPs). Although currently not detected, exomoons could be orbiting some of these CBPs, and they might be suitable for harboring life. A necessary condition for the existence of such exomoons is their long-term dynamical stability. Here, we investigate the stability of exomoons around the Kepler CBPs using numerical $N$-body integrations. We determine regions of stability and obtain stability maps in the (a_m,i_pm) plane, where a_m is the initial exolunar semimajor axis with respect to the CBP, and i_pm is the initial inclination of the orbit of the exomoon around the planet with respect to the orbit of the planet around the stellar binary. Ignoring any dependence on i_pm, for most Kepler CBPs the stability regions are well described by the location of the 1:1 mean motion commensurability of the binary orbit with the orbit of the moon around the CBP. This is related to a destabilizing effect of the binary compared to the case if the binary were replaced by a single body, and which is borne out by corresponding 3-body integrations. For high inclinations, the evolution is dominated by Lidov-Kozai oscillations, which can bring moons in dynamically stable orbits to close proximity within the CBP, triggering strong interactions such as tidal evolution, tidal disruption, or direct collisions. This suggests that there is a dearth of highly-inclined exomoons around the Kepler CBPs, whereas coplanar exomoons are dynamically allowed.
All-sky imaging surveys have identified several dozen isolated planetary-mass objects (IPMOs), far away from any star. Here, we examine the prospects for detecting transiting moons around these objects. We expect transiting moons to be common, occurr ing around 10-15% of IPMOs, given that close-orbiting moons have a high geometric transit probability and are expected to be a common outcome of giant planet formation. IPMOs offer an advantage over other directly imaged planets in that high-contrast imaging is not necessary to detect the photometric transit signal. For at least 30 (>50%) of the currently known IPMOs, observations of a single transit with the James Webb Space Telescope would have low enough forecasted noise levels to allow for the detection of an Io-like or Titan-like moon. Intrinsic variability of the IPMOs will be an obstacle. Using archival time-series photometry of IPMOs with the Spitzer Space Telescope as a proof-of-concept, we found evidence for a fading event of 2MASS J1119-1137 AB that might have been caused by intrinsic variability, but is also consistent with a single transit of a habitable-zone 1.7$R_oplus$ exomoon. Although the interpretation of this particular event is inconclusive, the characteristics of the data and the candidate signal suggest that Earth-sized habitable-zone exomoons around IPMOs are detectable with existing instrumentation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا