ﻻ يوجد ملخص باللغة العربية
The hyperfine structure of the interstitial muonium (Mu) in rutile (TiO$_2$, weakly $n$-type) has been identified by means of a muon spin rotation technique. The angle-resolved hyperfine parameters exhibit a tetragonal anisotropy within the $ab$ plane and axial anisotropy with respect to the $langle 001rangle$ ($hat{c}$) axis. This strongly suggests that the Mu is bound to O (forming an OH bond) at an off-center site within a channel along the $hat{c}$ axis, while the unpaired Mu electron is localized around the neighboring Ti site. The hyperfine parameters are quantitatively explained by a model that considers spin polarization of the unpaired electron at both the Ti and O sites, providing evidence for the formation of Mu as a Ti-O-Mu complex paramagnetic state. The disappearance of the Mu signal above $sim$10 K suggests that the energy necessary for the promotion of the unpaired electron to the conduction band by thermal activation is of the order of $10^1$ meV. These observations suggest that, while the electronic structure of Mu (and hence H) differs considerably from that of the conventional shallow level donor described by the effective mass model, Mu supplies a loosely bound electron, and thus, serves as a donor in rutile.
The hyperfine structure of the interstitial muonium (Mu) center in rutile (TiO$_2$, weakly $n$-type) has been identified by means of muon spin rotation technique. The angle-resolved hyperfine parameter has a tetragonal anisotropy within the $ab$ plan
Small polaron formation in transition metal oxides, like the prototypical material rutile TiO$_2$, remains a puzzle and a challenge to simple theoretical treatment. In our combined experimental and theoretical study, we examine this problem using Ram
We propose the design of low strained and energetically favourable mono and bilayer graphene overlayer on anatase TiO$_2$ (001) surface and examined the electronic structure of the interface with the aid of first principle calculations. In the absenc
Recently, rutile RuO$_2$ has raised interest for its itinerant antiferromagnetism, crystal Hall effect, and strain-induced superconductivity. Understanding and manipulating these properties demands resolving the electronic structure and the relative
We report measurements of the diffusion rate of isolated ion-implanted $^{8}$Li$^{+}$ within $sim$120 nm of the surface of oriented single-crystal rutile TiO$_2$ using a radiotracer technique. The $alpha$-particles from the $^{8}$Li decay provide a s