ترغب بنشر مسار تعليمي؟ اضغط هنا

Capacity and Rate Regions of A Class of Broadcast Interference Channels

90   0   0.0 ( 0 )
 نشر من قبل Yuanpeng Liu
 تاريخ النشر 2015
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper, a class of broadcast interference channels (BIC) is investigated, where one of the two broadcast receivers is subject to interference coming from a point-to-point transmission. For a general discrete memoryless broadcast interference channel (DM-BIC), an achievable scheme based on message splitting, superposition and binning is proposed and a concise representation of the corresponding achievable rate region R is obtained. Two partial-order broadcast conditions interference-oblivious less noisy and interference-cognizant less noisy are defined, thereby extending the usual less noisy condition for a regular broadcast channel by taking interference into account. Under these conditions, a reduced form of R is shown to be equivalent to a rate region based on a simpler scheme, where the broadcast transmitter uses only superposition. Furthermore, if interference is strong for the interference-oblivious less noisy DM-BIC, the capacity region is given by the aforementioned two equivalent rate regions. For a Gaussian broadcast interference channel (GBIC), channel parameters are categorized into three regimes. For the first two regimes, which are closely related to the two partial-order broadcast conditions, achievable rate regions are derived by specializing the corresponding achievable schemes of DM-BICs with Gaussian input distributions. The entropy power inequality (EPI) based outer bounds are obtained by combining bounding techniques for a Gaussian broadcast channel (GBC) and a Gaussian interference channel (GIC). These inner and outer bounds lead to either exact or approximate characterizations of capacity regions and sum capacity under various conditions. For the remaining complementing regime, inner and outer bounds are also provided.

قيم البحث

اقرأ أيضاً

A partially cooperative relay broadcast channel (RBC) is a three-node network with one source node and two destination nodes (destinations 1 and 2) where destination 1 can act as a relay to assist destination 2. Inner and outer bounds on the capacity region of the discrete memoryless partially cooperative RBC are obtained. When the relay function is disabled, the inner and outer bounds reduce to new bounds on the capacity region of broadcast channels. Four classes of RBCs are studied in detail. For the partially cooperative RBC with degraded message sets, inner and outer bounds are obtained. For the semideterministic partially cooperative RBC and the orthogonal partially cooperative RBC, the capacity regions are established. For the parallel partially cooperative RBC with unmatched degraded subchannels, the capacity region is established for the case of degraded message sets. The capacity is also established when the source node has only a private message for destination 2, i.e., the channel reduces to a parallel relay channel with unmatched degraded subchannels.
The two-receiver broadcast packet erasure channel with feedback and memory is studied. Memory is modeled using a finite-state Markov chain representing a channel state. Two scenarios are considered: (i) when the transmitter has causal knowledge of th e channel state (i.e., the state is visible), and (ii) when the channel state is unknown at the transmitter, but observations of it are available at the transmitter through feedback (i.e., the state is hidden). In both scenarios, matching outer and inner bounds on the rates of communication are derived and the capacity region is determined. It is shown that similar results carry over to channels with memory and delayed feedback and memoryless compound channels with feedback. When the state is visible, the capacity region has a single-letter characterization and is in terms of a linear program. Two optimal coding schemes are devised that use feedback to keep track of the sent/received packets via a network of queues: a probabilistic scheme and a deterministic backpressure-like algorithm. The former bases its decisions solely on the past channel state information and the latter follows a max-weight queue-based policy. The performance of the algorithms are analyzed using the frameworks of rate stability in networks of queues, max-flow min-cut duality in networks, and finite-horizon Lyapunov drift analysis. When the state is hidden, the capacity region does not have a single-letter characterization and is, in this sense, uncomputable. Approximations of the capacity region are provided and two optimal coding algorithms are outlined. The first algorithm is a probabilistic coding scheme that bases its decisions on the past L acknowledgments and its achievable rate region approaches the capacity region exponentially fast in L. The second algorithm is a backpressure-like algorithm that performs optimally in the long run.
The two-receiver broadcast packet erasure channel with feedback and memory is studied. Memory is modeled using a finite-state Markov chain representing a channel state. The channel state is unknown at the transmitter, but observations of this hidden Markov chain are available at the transmitter through feedback. Matching outer and inner bounds are derived and the capacity region is determined. The capacity region does not have a single-letter characterization and is, in this sense, uncomputable. Approximations of the capacity region are provided and two optimal coding algorithms are outlined. The first algorithm is a probabilistic coding scheme that bases its decisions on the past L feedback sequences. Its achievable rate-region approaches the capacity region exponentially fast in L. The second algorithm is a backpressure-like algorithm that performs optimally in the long run.
This paper focuses on the Layered Packet Erasure Broadcast Channel (LPE-BC) with Channel Output Feedback (COF) available at the transmitter. The LPE-BC is a high-SNR approximation of the fading Gaussian BC recently proposed by Tse and Yates, who char acterized the capacity region for any number of users and any number of layers when there is no COF. This paper provides a comparative overview of this channel model along the following lines: First, inner and outer bounds to the capacity region (set of achievable rates with backlogged arrivals) are presented: a) a new outer bound based on the idea of the physically degraded broadcast channel, and b) an inner bound of the LPE-BC with COF for the case of two users and any number of layers. Next, an inner bound on the stability region (set of exogenous arrival rates for which packet arrival queues are stable) for the same model is derived. The capacity region inner bound generalizes past results for the two-user erasure BC, which is a special case of the LPE-BC with COF with only one layer. The novelty lies in the use of inter-user and inter-layer network coding retransmissions (for those packets that have only been received by the unintended user), where each random linear combination may involve packets intended for any user originally sent on any of the layers. For the case of $K = 2$ users and $Q geq 1$ layers, the inner bounds to the capacity region and the stability region coincide; both strategically employ the novel retransmission protocol. For the case of $Q = 2$ layers, sufficient conditions are derived by Fourier-Motzkin elimination for the inner bound on the stability region to coincide with the capacity outer bound, thus showing that in those cases the capacity and stability regions coincide.
197 - Youlong Wu 2016
Achievable rate regions for cooperative relay broadcast channels with rate-limited feedback are proposed. Specifically, we consider two-receiver memoryless broadcast channels where each receiver sends feedback signals to the transmitter through a noi seless and rate-limited feedback link, and meanwhile, acts as relay to transmit cooperative information to the other receiver. Its shown that the proposed rate regions improve on the known regions that consider either relaying cooperation or feedback communication, but not both.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا