ﻻ يوجد ملخص باللغة العربية
In this paper, a class of broadcast interference channels (BIC) is investigated, where one of the two broadcast receivers is subject to interference coming from a point-to-point transmission. For a general discrete memoryless broadcast interference channel (DM-BIC), an achievable scheme based on message splitting, superposition and binning is proposed and a concise representation of the corresponding achievable rate region R is obtained. Two partial-order broadcast conditions interference-oblivious less noisy and interference-cognizant less noisy are defined, thereby extending the usual less noisy condition for a regular broadcast channel by taking interference into account. Under these conditions, a reduced form of R is shown to be equivalent to a rate region based on a simpler scheme, where the broadcast transmitter uses only superposition. Furthermore, if interference is strong for the interference-oblivious less noisy DM-BIC, the capacity region is given by the aforementioned two equivalent rate regions. For a Gaussian broadcast interference channel (GBIC), channel parameters are categorized into three regimes. For the first two regimes, which are closely related to the two partial-order broadcast conditions, achievable rate regions are derived by specializing the corresponding achievable schemes of DM-BICs with Gaussian input distributions. The entropy power inequality (EPI) based outer bounds are obtained by combining bounding techniques for a Gaussian broadcast channel (GBC) and a Gaussian interference channel (GIC). These inner and outer bounds lead to either exact or approximate characterizations of capacity regions and sum capacity under various conditions. For the remaining complementing regime, inner and outer bounds are also provided.
A partially cooperative relay broadcast channel (RBC) is a three-node network with one source node and two destination nodes (destinations 1 and 2) where destination 1 can act as a relay to assist destination 2. Inner and outer bounds on the capacity
The two-receiver broadcast packet erasure channel with feedback and memory is studied. Memory is modeled using a finite-state Markov chain representing a channel state. Two scenarios are considered: (i) when the transmitter has causal knowledge of th
The two-receiver broadcast packet erasure channel with feedback and memory is studied. Memory is modeled using a finite-state Markov chain representing a channel state. The channel state is unknown at the transmitter, but observations of this hidden
This paper focuses on the Layered Packet Erasure Broadcast Channel (LPE-BC) with Channel Output Feedback (COF) available at the transmitter. The LPE-BC is a high-SNR approximation of the fading Gaussian BC recently proposed by Tse and Yates, who char
Achievable rate regions for cooperative relay broadcast channels with rate-limited feedback are proposed. Specifically, we consider two-receiver memoryless broadcast channels where each receiver sends feedback signals to the transmitter through a noi