ترغب بنشر مسار تعليمي؟ اضغط هنا

The impact of quark masses on pQCD thermodynamics

43   0   0.0 ( 0 )
 نشر من قبل Thorben Graf
 تاريخ النشر 2015
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We present results for several thermodynamic quantities within the next-to-leading order calculation of the thermodynamic potential in perturbative QCD at finite temperature and chemical potential including non-vanishing quark masses. These results are compared to lattice data and to higher-order optimized perturbative calculations to investigate the trend brought about by mass corrections.

قيم البحث

اقرأ أيضاً

328 - R.A. Soltz , C. DeTar , F. Karsch 2015
Over the past few years new physics methods and algorithms as well as the latest supercomputers have enabled the study of the QCD thermodynamic phase transition using lattice gauge theory numerical simulations with unprecedented control over systemat ic errors. This is largely a consequence of the ability to perform continuum extrapolations with physical quark masses. Here we review recent progress in lattice QCD thermodynamics, focussing mainly on results that benefit from the use of physical quark masses: the crossover temperature, the equation of state, and fluctuations of the quark number susceptibilities. In addition, we place a special emphasis on calculations that are directly relevant to the study of relativistic heavy ion collisions at RHIC and the LHC.
We have investigated shear viscosity of quark matter in presence of a strong uniform magnetic field background where Nambu-Jona-Lasinio model has been considered to describe the magneto-thermodynamical properties of the medium. In presence of magneti c field, shear viscosity coefficient gets split into different components because of anisotropy in tangential stress of the fluid. Four different components can be merged to two components in limit of strong field, where collisional width of quark becomes much lower than its synchrotron frequency. A simplified contact diagram of quark-quark interaction can estimate a small collisional width, where strong field limit expressions are exactly applicable. Although, for RHIC or LHC matter, one can expect a large thermal width, for which generalized four components viscosities are necessary. We have explored these all different possible cases in the thermodynamical framework of Nambu-Jona-Lasinio model.
We present a unified approach to the thermodynamics of hadron-quark-gluon matter at finite temperatures on the basis of a quark cluster expansion in the form of a generalized Beth-Uhlenbeck approach with a generic ansatz for the hadronic phase shifts that fulfills the Levinson theorem. The change in the composition of the system from a hadron resonance gas to a quark-gluon plasma takes place in the narrow temperature interval of $150 - 185$ MeV where the Mott dissociation of hadrons is triggered by the dropping quark mass as a result of the restoration of chiral symmetry. The deconfinement of quark and gluon degrees of freedom is regulated by the Polyakov loop variable that signals the breaking of the $Z(3)$ center symmetry of the color $SU(3)$ group of QCD. We suggest a Polyakov-loop quark-gluon plasma model with $mathcal{O}(alpha_s)$ virial correction and solve the stationarity condition of the thermodynamic potential (gap equation) for the Polyakov loop. The resulting pressure is in excellent agreement with lattice QCD simulations up to high temperatures.
We have attempted to build first some simplified model to map the interaction of quarks and gluons, which can be contained by their thermodynamical quantity like entropy density, obtained from calculation of lattice quantum chromo dynamics (LQCD). Wi th respect to entropy density of the standard non-interacting massless quark gluon plasma (QGP), its interacting values from LQCD simulation are reduced as we go from higher to lower temperature through the cross-over of quark-hadron phase transition. By parameterizing increasing degeneracy factor or increasing interaction-fugacity or decreasing thermal width of quarks and gluons with temperature, we have matched LQCD data.Using that interaction picture, shear viscosity and electrical conductivity are calculated. For getting nearly perfect fluid nature of QGP, interaction might have some role when we consider temperature dependent thermal width.
The grand partition function of a model of confined quarks is exactly calculated at arbitrary temperatures and quark chemical potentials. The model is inspired by a softly BRST-broken version of QCD and possesses a quark mass function compatible with nonperturbative analyses of lattice simulations and Dyson-Schwinger equations. Even though the model is defined at tree level, we show that it produces a nontrivial and stable thermodynamic behaviour at any temperature or chemical potential. Results for the pressure, the entropy and the trace anomaly as a function of the temperature are qualitatively compatible with the effect of nonperturbative interactions as observed in lattice simulations. The finite density thermodynamics is also shown to contain nontrivial features, being far away from an ideal gas picture.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا