ﻻ يوجد ملخص باللغة العربية
Using the adiabatic connection, we formulate the free energy in terms of the correlation function of a fictitious system, $h_{lambda}({bf r},{bf r})$, where $lambda$ determines the interaction strength. To obtain $h_{lambda}({bf r},{bf r})$ we use the Ornstein-Zernike equation, and the two equations constitute a general liquid-state framework for treating inhomogeneous fluids. As the two equations do not form a closed set, an approximate closure relation is required and it determines a type of an approximation. In the present work we investigate the random phase approximation (RPA) closure. We determine that this approximation is identical to the variational Gaussian approximation derived within the framework of the field-theory. We then apply our generalized RPA approximation to the Gaussian core model and Coulomb charges.
We propose a simplified version of local molecular field (LMF) theory to treat Coulomb interactions in simulations of ionic fluids. LMF theory relies on splitting the Coulomb potential into a short-ranged part that combines with other short-ranged co
We use an analytic criterion for vanishing of exponential damping of correlations developed previously (Piasecki et al, J. Chem. Phys., 133, 164507, 2010) to determine the threshold volume fractions for structural transitions in hard sphere systems i
We construct a density functional for the lattice gas / Ising model on square and cubic lattices based on lattice fundamental measure theory. In order to treat the nearest-neighbor attractions between the lattice gas particles, the model is mapped to
Classical density functional theory for finite temperatures is usually formulated in the grand-canonical ensemble where arbitrary variations of the local density are possible. However, in many cases the systems of interest are closed with respect to
We study the spin Coulomb drag in a quasi-two-dimensional electron gas beyond the random phase approximation (RPA). We find that the finite transverse width of the electron gas causes a significant reduction of the spin Coulomb drag. This reduction,