ﻻ يوجد ملخص باللغة العربية
In the fragmentation of a transversely polarized quark several left-right asymmetries are possible for the hadrons in the jet. When only one unpolarized hadron is selected, it exhibits an azimuthal modulation known as Collins effect. When a pair of oppositely charged hadrons is observed, three asymmetries can be considered, a di-hadron asymmetry and two single hadron asymmetries. In lepton deep inelastic scattering on transversely polarized nucleons all these asymmetries are coupled with the transversity distribution. From the high statistics COMPASS data on oppositely charged hadron-pair production we have investigated for the first time the dependence of these three asymmetries on the difference of the azimuthal angles of the two hadrons. The similarity of transversity induced single and di-hadron asymmetries is discussed. A new analysis of the data allows to establish quantitative relationships among them, providing for the first time strong experimental indication that the underlying fragmentation mechanisms are all driven by a common physical process.
The transverse spin asymmetries measured in semi-inclusive leptoproduction of hadrons, when weighted with the hadron transverse momentum $P_T$, allow for the extraction of important transverse-momentum-dependent distribution functions. In particular,
We analyze the light meson leptoproduction within the handbag approach. We show that effects determined by the transversity Generalized Parton Distributions (GPDs), $H_T$ and $bar E_T$ are essential in the description of pseudoscalar and vector meson leptoproduction.
We measured the longitudinal double spin asymmetries $A_{LL}$ for single hadron muo-production off protons and deuterons at photon virtuality $Q^2$ < 1(GeV/$it c$)$^2$ for transverse hadron momenta $p_T$ in the range 0.7 GeV/$it c$ to 4 GeV/$it c$ .
We analyze the longitudinal-transverse double-spin asymmetry in lepton-nucleon collisions where a single hadron is detected in the final state, i.e., $vec{ell},N^uparrow rightarrow h,X$. This is a subleading-twist observable in collinear factorizatio
The transversity was recently extracted from data on the production of hadron pairs in semi-inclusive deep-inelastic scattering. This analysis can be conveniently performed in the framework of collinear factorization where the elementary mechanism is